Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die Auftriebskraft

Tauche ein in die Welt der Physik und entdecke das Geheimnis, wie riesige Schiffe schwimmen können: die Auftriebskraft! Verstehe, wie das archimedische Prinzip die Wissenschaft hinter schwimmenden Objekten erklärt, und lerne, die Auftriebskraft mit einer klaren Formel zu berechnen. Bist du bereit, mehr über diese faszinierende Kraft zu erfahren? Dann lies weiter und teste dein Wissen mit unseren Übungsaufgaben!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Die Auftriebskraft

Wie lautet das archimedische Prinzip?

1/1
Bereit für eine echte Prüfung?

Das Auftriebskraft Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.2 / 81 Bewertungen
Die Autor*innen
Avatar
Team Digital
Die Auftriebskraft
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Die Auftriebskraft

Was ist die Auftriebskraft?

Hast du schon einmal ein riesiges Containerschiff gesehen? Dann hast du dich bestimmt gefragt, wie so ein riesiges Schiff überhaupt schwimmen kann. Der Grund dafür ist die sogenannte Auftriebskraft. Doch was ist die Auftriebskraft eigentlich und wie kann man sie berechnen?

Archimedisches Prinzip

Das Prinzip, das hinter der Auftriebskraft steckt, ist schon sehr lange bekannt. Es wurde zum ersten Mal vor über 2.000 Jahren von einem griechischen Gelehrten namens Archimedes formuliert. Deswegen nennt man es auch das archimedische Prinzip. Es besagt, dass die Auftriebskraft eines Körpers gerade so groß ist wie die Gewichtskraft des Mediums, das er verdrängt.

Auftriebskraft Formel

Für die Herleitung einer Formel für die Auftriebskraft, also den physikalischen Auftrieb, schauen wir uns die folgende Situation an:

Auftriebskraft Physik, Warum schwimmt ein Schiff?

Ein großes Schiff schwimmt auf dem Ozean. Aufgrund der Erdanziehung wirkt auf das Schiff eine Gewichtskraft, die es nach unten zieht. Da es nicht untergeht, muss eine Kraft wirken, die die Gewichtskraft des Schiffs gerade kompensiert. Beide Kräfte wirken in entgegengesetzte Richtungen, wie du im Bild sehen kannst.

Nach dem archimedischen Prinzip ist die Auftriebskraft gerade so groß wie die Gewichtskraft des verdrängten Wassers und diese können wir wiederum als Produkt aus der Masse des verdrängten Wassers und der Erdbeschleunigung gg schreiben, also:

FAuftrieb=mverdra¨ngtes Wasserg=Vverdra¨ngtρWassergF_{Auftrieb} = m_{verdrängtes~Wasser} \cdot g = V_{verdrängt} \cdot \rho_{Wasser} \cdot g

Im letzten Schritt der Gleichung haben wir außerdem ausgenutzt, dass die Masse des Wassers dem Produkt aus verdrängtem Volumen und Dichte entspricht. Wenn wir die Auftriebskraft in einem anderen Medium berechnen wollen, müssen wir natürlich auch die entsprechende Dichte dazu einsetzen.

Nun haben wir also auch eine Formel für die Auftriebskraft. Bisher haben wir einen schwimmenden Körper betrachtet. Insgesamt können aber drei Fälle auftreten, je nachdem wie sich Auftriebskraft und Gewichtskraft zueinander verhalten:

1. FAuftrieb>FGewicht Ko¨rperF_{Auftrieb} \gt F_{Gewicht~Körper} \longrightarrow Der Körper steigt auf.

2. FAuftrieb=FGewicht Ko¨rperF_{Auftrieb} = F_{Gewicht~Körper} \longrightarrow Der Körper schwimmt.

3. FAuftrieb<FGewicht Ko¨rperF_{Auftrieb} \lt F_{Gewicht~Körper} \longrightarrow Der Körper sinkt.

Ist die Auftriebskraft größer als die Gewichtskraft, die auf den Körper wirkt, steigt der Körper auf. Das passiert zum Beispiel dann, wenn du einen mit Luft gefüllten Luftballon unter Wasser loslässt. Wenn Auftriebskraft und Gewichtskraft gleich sind, schwimmt der Körper. Und wenn die Auftriebskraft kleiner als die Gewichtskraft ist, geht der Körper unter.

Auftriebskraft – Beispiele:

Teste dein Wissen zum Thema Auftriebskraft!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Um das Verständnis der Auftriebskraft zu vertiefen, wollen wir gemeinsam ein paar Beispielrechnungen durchgehen.

Beispiel 1: Wie groß ist die Auftriebskraft für ein 100.000 kg100.000~\text{kg} schweres schwimmendes Schiff?

Da das Schiff schwimmt, wissen wir, dass der Auftrieb gerade die Gewichtskraft kompensiert – sonst würde es ja untergehen. Wir können also festhalten:

FAuftrieb=FGewichtF_{Auftrieb} = F_{Gewicht}

Da wir die Masse des Schiffs und die Erdbeschleunigung gg kennen, können wir diese Werte zur Berechnung der Gewichtskraft einsetzen. So erhalten wir die Auftriebskraft:

FAuftrieb=mSchiffg=100.000 kg10 ms2=1.000.000 NF_{Auftrieb} =m_{Schiff} \cdot g = 100.000~\text{kg} \cdot 10~\frac{\text{m}}{\text{s}^2} = 1.000.000~ \text{N}

Im letzten Schritt haben wir für die Auftriebskraft noch die Definition für die Einheit Newton verwendet. Es ist also eine Auftriebskraft von 1 Million Newton1~\text{Million}~\text{Newton} nötig, damit unser Schiff schwimmt. Das ist ganz schön viel!

Beispiel 2: Wie groß ist das Volumen des vom Schiff verdrängten Wassers?

Um das Volumen zu berechnen, nutzen wir das archimedische Prinzip. Wir schreiben die Gleichung noch einmal auf:

FAuftrieb=mverdra¨ngtes Wasserg=Vverdra¨ngtρWassergF_{Auftrieb} = m_{verdrängtes~Wasser} \cdot g = V_{verdrängt} \cdot \rho_{Wasser} \cdot g

Die Auftriebskraft haben wir schon im ersten Beispiel ausgerechnet. Sie beträgt genau 1.000.0001.000.000 N. Die Erdbeschleunigung gg kennen wir auch und die Dichte von Wasser können wir in einer Datenbank nachschlagen. Sie beträgt gerundet 1.000 kgm31.000~\frac{\text{kg}}{\text{m}^3}. Wir müssen also nur noch die Formel nach VV umstellen, indem wir durch ρWasser\rho_{Wasser} und gg teilen:

FAuftrieb=Vverdra¨ngtρWasserg :(ρWasserg)F_{Auftrieb} = V_{verdrängt} \cdot \rho_{Wasser} \cdot g ~ | \, : (\rho_{Wasser} \cdot g)

Vverdra¨ngt=FAuftrieb(ρWasserg)\Longrightarrow V_{verdrängt} = \frac{F_{Auftrieb}}{(\rho_{Wasser} \cdot g)}

Jetzt müssen wir nur noch alle Werte einsetzen, um das Volumen des verdrängten Wassers zu erhalten:

Vverdra¨ngt=1.000.000 N1.000 kgm310mkg=100 m3V_{verdrängt} = \frac{1.000.000~\text{N}}{1.000~\frac{\text{kg}}{\text{m}^3} \cdot 10\frac{\text{m}}{\text{kg}}} = 100~\text{m}^3

Das Schiff verdrängt also 100 Kubikmeter100~\text{Kubikmeter} Wasser.

Beispiel 3: Wir schwer muss eine ein Kubikmeter große Kiste sein, damit sie sinkt?

Wir bleiben auf dem Schiff und wollen messen, wie tief das Meer ist. Dazu müssen wir eine Kiste an einem Seil ins Wasser lassen, die bis auf den Meeresboden sinkt. An der Länge des Seils können wir dann die Tiefe ablesen.

Auftriebskraft einer Kiste unter Wasser nach dem Archimedischen Prinzip

Damit die Kiste untergeht, muss ihre Gewichtskraft größer sein als die Auftriebskraft. Das können wir als Gleichung aufschreiben:

FGewicht>FAuftriebF_{Gewicht} > F_{Auftrieb}

Wir setzen die Formel für die Gewichtskraft der Kiste ein und nutzen für die Auftriebskraft wieder das archimedische Prinzip. Dann formen wir nach der Masse der Kiste um, indem wir auf beiden Seiten durch gg teilen. Also:

mKisteg>Vverdra¨ngtρWasserg:gm_{Kiste} \cdot g > V_{verdrängt} \cdot \rho_{Wasser} \cdot g |:g

mKiste>Vverdra¨ngtρWasser\Longrightarrow m_{Kiste} > V_{verdrängt} \cdot \rho_{Wasser}

Jetzt müssen wir nur noch das Volumen der Kiste und die Dichte des Wassers einsetzen:

mKiste>1 m31.000 kgm3=1.000 kgm_{Kiste} > 1~\text{m}^3 \cdot 1.000~\frac{\text{kg}}{\text{m}^3} = 1.000~\text{kg}

Die Kiste muss also 1.000 Kilogramm1.000~\text{Kilogramm} wiegen, damit sie bis auf den Meeresboden absinkt.

Auftriebskraft – Aufgaben

Du findest neben Video und Text interaktive Aufgaben, mit denen du weiterüben kannst.

Sind dir die Aufgaben zu leicht? Dann überleg doch mal, wie du die Auftriebskraft für einen Heißluftballon bestimmen kannst.

Transkript Die Auftriebskraft

Ach ja, so lässt sich's leben. Einfach mal schweben und das Leben genießen. Im Toten Meer. Was hat es eigentlich damit auf sich und warum kann man da drin so seelenruhig schweben? Im SALZIGSTEN Gewässer der Welt. Verantwortlich dafür ist "Die Auftriebskraft". Eine solche Beobachtung dürfte die wenigsten von uns verwundern: Manche Gegenstände schwimmen, manche sind am Grund. Logisch. Das Gewicht ist ja schwerer als der Korken. Das gilt auch für Öltanker. Den Schlüssel zum Verständnis des Schwimmens fand der griechische Ingenieur, Physiker und Mathematiker Archimedes aus Syrakus auf Sizilien. Beim Baden fiel ihm auf, dass das Wasser anstieg und überschwappte. Ihm wurde schlagartig klar, dass er genauso viel Wasservolumen verdrängt hatte, wie seinem eigenen Körpervolumen entsprach. Aber nicht nur das hatte er herausgefunden. Ein Körper wird im Wasser auch leichter! Offenbar wirkt auf einen untergetauchten Körper eine Kraft, die seiner Gewichtskraft F-G entgegenwirkt. Diese Kraft heißt Auftriebskraft F-A. Wenn sie kleiner ist als die Gewichtskraft, sinkt der Körper. Wenn sie genauso groß ist, schwebt der Körper im Wasser. Wenn die Auftriebskraft größer ist, steigt der Körper nach oben und schwimmt. Aber: Wie groß ist die Auftriebskraft und wo kommt sie her? Die Ursache für den Auftrieb ist der Druck des Wassers, der sogenannte hydrostatische Druck. Er wird verursacht durch das Gewicht des Wassers. Stell dir vor, in einem Wassertank befindet sich eine Scheibe der Fläche A in der Tiefe h und parallel zur Oberfläche. Auf diese Scheibe drückt von oben die Wassersäule über ihr. Sie übt auf die Scheibe eine Gewichtskraft F-G der Größe "Masse der Wassersäule m mal Ortsfaktor g" aus. Im folgenden setzen wir den Malpunkt nur noch, wenn es sonst zu unübersichtlich wird. Bei der Wassersäule handelt es sich um einen Zylinder mit dem Volumen A mal h. Mit der Dichte des Wassers rho-W können wir seine Masse ausrechnen: m gleich rho-W mal A mal h. Die Gewichtskraft der Wassersäule über der Scheibe ist dann F-G gleich rho-W mal A mal h mal g. Der Druck p auf die Scheibe ist dann Kraft pro Fläche, also F-G durch A. Dies ist gleich rho-w mal A mal h mal g geteilt durch A, also rho-w mal h mal g. Meistens stellt man die Formel um und sagt: Der hydrostatische Druck in der Wassertiefe h ist rho-W mal g mal h. Anders als die Kraft kennt der Wasserdruck keine Richtung. In einer bestimmten Tiefe h herrscht in alle Richtungen derselbe hydrostatische Druck. Darin liegt das Geheimnis des Auftriebs! Betrachten wir einen Quader unter Wasser. Seine Oberseite befindet sich in der Tiefe h-eins unter der Wasseroberfläche, seine Unterseite in der Tiefe h-zwei. Die Fläche von Ober- oder Unterseite sei jeweils gleich A. Die Drücke an den Seitenflächen führen zu Kräften, die sich gegenseitig aufheben. Der Druck p-zwei in der Tiefe h-zwei auf die Unterseite führt zu einer Kraft F-zwei nach oben, der Druck p-eins in der Tiefe h-eins auf die Oberseite zu einer Kraft F-eins nach unten. F-zwei ist p-zwei mal A, F-eins ist p-eins mal A. Da p-zwei größer ist als p-eins, ist auch F-zwei größer als F-eins! Die Differenz dieser beiden Kräfte ist die Auftriebskraft! Der Körper wird nach oben gedrückt! Wir setzen ein, was wir wissen, und formen um. Die Kräftedifferenz schreiben wir mit p-zwei und p-eins, dann klammern wir A aus. Jetzt setzen wir die Ausdrücke für den Druck ein. Jetzt klammern wir A, rho-w und g aus. h-zwei minus h-eins entspricht der Höhe des Quaders. Dann ist A mal in Klammern h-zwei minus h-eins sein Volumen V-K. Dann wird die Auftriebskraft zu F-A gleich V-K mal Rho-W mal g. Das Produkt aus rho-W und V-K, also der Dichte des Wassers und dem Volumen des Körpers, entspricht der Masse einer Menge Wasser mit demselben Volumen wie der Körper. Multiplizieren wir das Ganze mit g erhalten wir die Gewichtskraft des VERDRÄNGTEN Wassers! Und genau das hatte Archimedes herausgefunden. Wenn ein Körper im Wasser schwebt, heben sich Auftriebskraft und Gewichtskraft gerade auf. Wir setzen ein und teilen auf beiden Seiten durch g. Die Masse des Körpers ist das Produkt aus seinem Volumen V-K und seiner Dichte Rho-K. Wir teilen auf beiden Seiten durch V-K. Ein Körper schwebt im Wasser, wenn seine mittlere Dichte genauso groß ist wie die Dichte von Wasser. Natürlich sinkt er, wenn seine Dichte größer ist als die von Wasser. Und wenn seine Dichte kleiner ist, steigt er, beziehungsweise schwimmt er, auf dem Wasser. Wovon hängt es nun ab, wie weit ein schwimmender Körper aus dem Wasser herausragt bzw. wie tief ein schwimmender Körper eintaucht? Ein Quader der Dichte rho-K mit Grundfläche A und Höhe h schwimmt so, dass seine Eintauchtiefe d beträgt. Da der Quader nicht sinkt, ist die Auftriebskraft bei der gesuchten Eintauchtiefe offenbar so groß wie die Gewichtskraft des Körpers. Die Auftriebskraft ist wieder die Gewichtskraft des verdrängten Wassers. Es wird aber nur von dem Teil des Quaders, der unter Wasser liegt, Wasser verdrängt. Das Volumen dieses Quaderstücks und entsprechend des verdrängten Wassers V-W ist A mal d. Dann ist die Auftriebskraft F-A gleich V-W mal rho-W mal g gleich A mal d mal rho-W mal g. Für die Gewichtskraft des Quaders ist aber sein ganzes Volumen A mal h verantwortlich. Demnach gilt: Wir teilen auf beiden Seiten durch A und g und erhalten "Eintauchtiefe mal Wasserdichte gleich Gesamthöhe mal Körperdichte". Anders ausgedrückt: Die Eintauchtiefe d verhält sich zur Gesamthöhe h wie die Dichte des Körpers zur Dichte des Wassers. Deshalb schwimmt der Tanker vom Anfang des Videos. Weil sein Schiffskörper genug Luft enthält, dass seine mittlere Dichte kleiner ist als die des Wassers. Wenn beide Dichten gleich sind, taucht der Körper ganz ein und schwebt. Und wir schweben zur Zusammenfassung. In der Tiefe h unter der Wasseroberfläche herrscht der hydrostatische Druck p gleich rho-W mal g mal h. Dieser führt auf der Oberseite eines Quaders im Wasser zu einer Kraft nach unten und auf der Unterseite zu einer Kraft nach oben. Die Differenz beider Kräfte ist die Auftriebskraft. Sie entspricht der Gewichtskraft des verdrängten Wassers. Das Verhältnis zwischen der mittleren Dichte des Körpers und der Dichte des Wassers ist entscheidend dafür, wie der Körper sich im Wasser verhält. Die Eintauchtiefe d eines schwimmenden Körpers verhält sich zur Gesamthöhe h wie die Dichte des Körpers zur Dichte des Wassers. Jetzt ist klar, warum man im Toten Meer so unbeschwert auf der Wasseroberfläche liegen kann: Durch den sehr hohen Salzgehalt ist die Dichte des Wassers um zirka fünfundzwanzig Prozent höher als normales Wasser und damit deutlich größer als die mittlere Dichte eines Menschen. Und das Tote Meer ist noch nicht mal das SALZIGSTE Gewässer des Planeten. Aber einen Weltrekord stellt es trotzdem auf: Es ist der tiefstgelegene See der Erde. Vierhundertvierzig Meter UNTER dem Meeresspiegel.

Die Auftriebskraft Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die Auftriebskraft kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.311

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.722

Lernvideos

37.189

Übungen

32.420

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

zuri mit Bleistift und Notizbuch
Über 1,6 Millionen Schüler*innen nutzen sofatutor
Erhalten Sie in weniger als 2 Minuten ein persönliches Willkommensangebot für ihr Kind. Erhalten Sie in weniger als 2 Minuten ein persönliches Willkommensangebot für ihr Kind.
Quiz starten
Quiz starten
Quiz starten