Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zyklotron (Übungsvideo)

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Zyklotron Beispiel Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Zyklotron (Übungsvideo)
lernst du in der Oberstufe 7. Klasse - 8. Klasse - 9. Klasse

Grundlagen zum Thema Zyklotron (Übungsvideo)

In diesem Video werden drei Beispielaufgaben zum Zyklotron gerechnet. In der ersten Aufgabe sollst du eine Formel für die Winkelgeschwindigkeit herleiten. Die zweite Aufgabe dreht sich um die Geschwindigkeit eines Protons im Zyklotron und um einen um einen Vergleich zwischen Zyklotron und Linearbeschleuniger. Als letztes sollst du dann noch berechnen, welche magnetische Flussdichte nötig ist, um ein geladenes Teilchen auf 1/10 der Lichtgeschwindigkeit zu beschleunigen

Transkript Zyklotron (Übungsvideo)

Hallo und herzlich willkommen zu Physik mit Kalle. In diesem Video, das zum Gebiet Elektrizität und Magnetismus gehört, wollen wir einmal eine Beispielaufgabe zum Zyklotron rechnen. Wir betrachten einen Zyklotron, dessen Duanten einen maximalen Bahnradius r=0,5m zulassen. Zur Ablenkung geladener Teilchen wird ein Magnetfeld der Flussdichte B=0,5T verwendet. Aufgabe a: Leiten Sie eine Formel für die Winkelgeschwindigkeit ? her und erläutern Sie, unter welchen Umständen sie konstant ist. Welche Geschwindigkeit hat ein Proton, Masse m=1,67×10^-27 kg, Ladung Q=1,6×10^-19 C) nach der Beschleunigung durch das Zyklotron, und welche Beschleunigung muss ein Linearbeschleuniger haben, um die gleiche Endgeschwindigkeit zu erreichen? Aufgabe c: Berechnen Sie, auf welchen Wert die magnetische Flussdichte eingestellt werden müsste, damit die Endgeschwindigkeit genau 1/10 der Lichtgeschwindigkeit beträgt. Wenn ihr die Aufgabe selbst berechnen wollt, drückt bitte jetzt die Pausetaste. Dann könnt ihr gleich euren Rechenweg überprüfen. Die Protonen werden durch die Lorentzkraft auf der Kreisbahn gehalten. Das heißt, wir können den Ansatz Zentripetalkraft = Lorentzkraft wählen. Wir schreiben als (mv²)/r=Q×v×B. Ein Proton, das sich mit der Geschwindigkeit v auf der Kreisbahn r bewegt, hat die Winkelgeschwindigkeit ?. Wir wissen: v=?×r oder, umgestellt: die Winkelgeschwindigkeit ?=v/r. Aus meinem Ansatz kann ich gleich ein v wegkürzen und damit schreiben Q×B=m×(v/r) oder, wenn ich für v/r gleich ? einsetze =m×?. Und daraus folgt ?=(Q×B)/m. Jetzt haben wir unsere Formel für die Winkelgeschwindigkeit hergeleitet. Als nächstes sollen wir erläutern, unter welchen Umständen sie konstant ist. Dazu müssen wir uns nur ihre Bestandteile ansehen. Die Ladung Q unseres Protons ändert sich nicht, und wenn die Flussdichte B des Feldes konstant bleibt, kommt es also nur noch auf die Masse m an. Die Masse eines Teilchens ändert sich nur, wenn man in relativistische Bereiche vordringt, also wenn die Geschwindigkeit ? 1/10 der Lichtgeschwindigkeit ist. Unser Antwortsatz lautet also: Die Winkelgeschwindigkeit ? ist konstant, wenn sich die magnetische Flussdichte nicht ändert und die Geschwindigkeit v<0,1c ist. Denn dann darf ich sagen, die Masse m, die genau genommen ja die Ruhemasse m0/ (\sqrt(1-v²/c²)) ist, ist in diesem Fall immer ungefähr =m0. In Aufgabe b haben wir gegeben die Masse des Protons ist 1,67×10^-27 kg, die Ladung des Protons ist 1,6×10^-19 C, der Radius beträgt 0,5m und die magnetische Felddichte B=0,5T. Wir wählen wieder den gleichen Ansatz wie gerade eben, Zentripetalkraft = Lorentzkraft, aber lösen diesmal nach der Geschwindigkeit auf. Es ergibt sich: Die Geschwindigkeit ist (r×Qp×B)/mp. Da ich das alles habe, setz ich es alles ein und schaue mir erst mal die Einheiten an. Wenn ich für T die Definition kg/(As²) einsetze, kürzt sich alles heraus bis auf m/s. Die Einheiten scheinen also zu stimmen. Das Ergebnis für die Geschwindigkeit ist 2,4×107 m/s. Ihr merkt, wir haben gerade noch Glück gehabt. Das ist knapp unter 1/10 der Lichtgeschwindigkeit, wir müssen also nicht relativistisch rechnen. Für den 2. Teil der Aufgabe benutzen wir nun den Ansatz elektrische Energie = kinetische Energie, denn wir haben ja nun die Geschwindigkeit. Wir schreiben die Beschleunigungsspannung U×Q=1/2 mv². Umstellen nach der Spannung ergibt U= Masse des Protons × Geschwindigkeit² durch 2× die Ladung. Ich setze alles ein und schaue mir wieder erst mal die Einheiten an. Diesmal kürzt sich nichts raus und ich erhalte (kg×m²)/(A×s³). (kg×m²)/s²= Joule, und dann bleibt unter dem Bruchstrich noch A×s, also C übrig. Trifft sich gut, den J/C=Volt. Mein Ergebnis lautet also 3×106 J/C oder anders geschrieben 3 Millionen Volt oder 3 Megavolt. Unsere Antwort lautet also: Ein Proton hat nach dem Durchlaufen des Zyklotrons die Geschwindigkeit v=2,4×107m/s. Ein Linearbeschleuniger mit U=3MV würde dieselbe Geschwindigkeit erreichen. In Aufgabe c haben wir gegeben: Die Geschwindigkeit soll diesmal 1/10 der Lichtgeschwindigkeit, also 0,1×c oder 3×107 m/s sein. Die Masse des Protons ist immer noch 1,67×10^-27 kg und die Ladung 1,6×10^-19 C. Gesucht ist die magnetische Flussdichte B. Wir nehmen wieder unseren Lieblingsansatz (m×v)/r=Q×B und stellen ihn nach der Flussdichte um. Es ergibt sich: Die magnetische Flussdichte B=(m×v)/(Q×r). Wir setzen ein und werfen wieder einmal einen Blick auf die Einheiten. Wir können Meter kürzen und übrig bleibt kg/(A×s²), und das ist genau ein Tesla. Unser Ergebnis lautet also 0,626 T. Bei einer magnetischen Flussdichte B=0,626 T erreicht die Geschwindigkeit der Protonen also 10% der Lichtgeschwindigkeit. So, das wars schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle.

Zyklotron (Übungsvideo) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zyklotron (Übungsvideo) kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.317

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.722

Lernvideos

37.189

Übungen

32.420

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden