Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Diagonale berechnen mit dem Satz des Pythagoras

Inhaltsverzeichnis zum Thema Diagonale berechnen mit dem Satz des Pythagoras
Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Diagonale Berechnen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.5 / 168 Bewertungen
Die Autor*innen
Avatar
Team Digital
Diagonale berechnen mit dem Satz des Pythagoras
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Diagonale berechnen mit dem Satz des Pythagoras

Was ist eine Diagonale?

Teste dein Wissen zum Thema Diagonale Berechnen!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

In der Geometrie versteht man unter einer Diagonalen eine Strecke, die die Ecken von Flächen oder Körpern miteinander verbinden, ohne selbst Seite oder Kante dieser Figur zu sein.

Flächendiagonalen

Bei Vielecken (Polygonen) mit mindestens vier Ecken ist die Diagonale die Verbindungsstrecke von nicht nebeneinanderliegenden Ecken.

Um die Länge von Diagonalen zu bestimmen, verwendet man den Satz des Pythagoras:

a)a) Quadrat

Quadrat_Diagonale.jpg

d2= a2+a2d=2a2d=a2\begin {array}{lll} d^{2} &=&\ a^{2} + a^{2}\\ d &=&\sqrt{2a^{2}}\\ d&=&a\sqrt{2}\\ \end{array}

b)b) Rechteck

Rechteck_Diagonale.jpg

d2= a2+b2d=a2+b2\begin {array}{lll} d^{2} &=&\ a^{2} + b^{2}\\ d &=&\sqrt{a^{2} + b^{2}}\\ \end{array}

In Quadraten, Rechtecken, Parallelogrammen und Rauten halbieren sich die Diagonalen gegenseitig.

Raumdiagonalen

Die Länge von Raumdiagonalen ermittelt man folgendermaßen:

a)a) Würfel:

Würfel_Raumdiagonale.jpg

d=a2+a2+a2=a3d = \sqrt{a^{2} + a^{2} + a^{2}} = a\sqrt{3}

b)b) Quader:

Quader_Raumdiagonale.jpg

d=a2+b2+c2d = \sqrt{a^{2} + b^{2} + c^{2}}

Transkript Diagonale berechnen mit dem Satz des Pythagoras

Hey du, ja genau du. Hast du schonmal was von Pythagoras gehört? Ja genau, dem Satz des Pythagoras. Und mit seiner Hilfe kann man auch Diagonalenlängen berechnen. In diesem Video schauen wir uns an, wie wir die Flächendiagonale eines Quadrats und die Raumdiagonale eines Würfels berechnen können. Wiederholen wir dazu zunächst einmal den Satz des Pythagoras, der für rechtwinklige Dreiecke gilt. Er besagt, dass die Summe der Katheten-Quadrate gleich dem Quadrat der Hypothenuse ist. a Quadrat plus b Quadrat ist also gleich c Quadrat. Diesen Satz können wir nun verwenden, um die Diagonalenlänge in einem Quadrat zu berechnen. Betrachten wir dazu zunächst ein allgemeines Quadrat mit einer Seitenlänge a. Dieses Quadrat können wir durch eine Diagonale in zwei Dreiecke aufteilen. Da ein Quadrat nur rechte Winkel besitzt, haben wir also zwei rechtwinklige Dreiecke. Die Hypotenuse liegt immer gegenüber von dem rechten Winkel; die Diagonale ist also hier die Hypotenuse der Dreiecke. Bezeichnen wir diese mit d. Da wir ein rechtwinkliges Dreieck haben, können wir hier den Satz des Pythagoras verwenden, um die Diagonalenlänge zu berechnen. Beide Katheten besitzen die Seitenlänge a. Wir wissen daher, dass a Quadrat plus a Quadrat gleich d Quadrat ist. Das können wir zu 2 a Quadrat ist gleich d Quadrat zusammenfassen. Um die Länge der Diagonale herauszufinden, müssen wir nun also nur noch nach d auflösen. Wir können zunächst auf beiden Seiten die Wurzel ziehen. Auf der rechten Seite erhalten wir dann d. Auf der linken Seite können wir die Produktregel für Wurzeln anwenden. Wir erhalten dann für d, Wurzel aus 2 mal a. Diese Formel gilt für jedes Quadrat. Schauen wir uns dazu doch einmal ein Beispiel an und betrachten dieses Quadrat mit einer Seitenlänge von 6cm. Die Länge der Diagonalen können wir nun einfach berechnen, indem wir 6cm in die Formel einsetzen. Wir erhalten also Wurzel 2 mal 6cm und das sind ungefähr 8,49cm. Die Diagonale hat also eine Länge von ca. 8,49cm. Den Satz des Pythagoras kann man aber auch verwenden, um die Raumdiagonale in einem Würfel zu berechnen. Schauen wir uns dazu doch einen Würfel mit einer Kantenlänge a an. Die Raumdiagonale des Würfels können wir hier einzeichnen. Wir bezeichnen sie mit e. Da der Satz des Pythagoras nur für rechtwinklige Dreiecke gilt, benötigen wir als Hilfe diese Diagonale. Dann können wir uns dieses Dreieck anschauen. Der rechte Winkel davon liegt hier. Wir wissen nun, dass d Quadrat plus a Quadrat gleich e Quadrat ist. Wir ziehen nun wieder die Wurzel, damit wir e erhalten. Aber was können wir d einsetzen? Dazu betrachten wir jetzt dieses Dreieck. Wir wissen schon von der Berechnung der Diagonalen des Quadrats, dass a Quadrat plus a Quadrat gleich d Quadrat ist. Setzen wir dies für d Quadrat ein, sehen wir, dass die Wurzel aus (a Quadrat plus a Quadrat plus a Quadrat) gleich e ist. Schreiben wir diese Summe nun als Produkt, haben wir auf der linken Seite Wurzel aus 3 mal a Quadrat. Wenden wir wieder die Produktregel für Wurzeln an, erhalten wir Wurzel aus 3 mal a. Hätten wir also einen Würfel mit der Kantenlänge von 6cm so erhalten wir für die Raumdiagonale e Wurzel 3 mal 6cm, also ungefähr 10,39cm. Die Raumdiagonale des Würfels ist also ungefähr 10,39 cm lang. Beeindruckend, was man mit dem Satz des Pythagoras alles machen kann, oder? Fassen wir das doch noch einmal zusammen. In einem Quadrat kann man die Flächendiagonale mithilfe der Formel d gleich Wurzel 2 mal a berechnen. In einem Würfel kann man die Länge der Raumdiagonalen mithilfe der Formel Wurzel aus 3 mal a berechnen. Beide Formeln haben wir mithilfe des Satz des Pythagoras hergeleitet. Ziemlich schräg diese Diagonalen, oder? Tschüss!

Diagonale berechnen mit dem Satz des Pythagoras Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Diagonale berechnen mit dem Satz des Pythagoras kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.226

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.661

Lernvideos

37.087

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden