Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Standardabweichung

Messreihe, Spannweite und Streuung verstehen: Erfahre, wie du den Mittelwert, die Spannweite und die Streuung berechnest und warum sie so wichtig sind. Entdecke die Unterschiede zwischen Varianz und Standardabweichung und lerne, wie du sie bestimmst und interpretierst. Interessiert? Dann lies weiter und lerne mehr!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Standardabweichung

Was ist die Standardabweichung?

1/3
Bereit für eine echte Prüfung?

Das Standardabweichung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 26 Bewertungen
Die Autor*innen
Avatar
Team Digital
Standardabweichung
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Standardabweichung

Spannweite, Standardabweichung und Varianz

Wenn Naturwissenschaftlerinnen und Naturwissenschaftler Experimente durchführen, wiederholen sie diese oft viele Male, um sie statistisch analysieren zu können. Eine solche Reihe von Experimenten nennt man auch eine Messreihe. Jede Messreihe hat die Messergebnisse xix_i mit einem Mittelwert xˉ\bar{x}. Neben dem Mittelwert ist auch die Streuung der Messergebnisse eine wichtige Größe, mit der Daten analysiert werden können. Sie gibt an, wie nahe beisammen oder weit auseinander die Messwerte liegen. Dafür nutzen wir in der Mathematik unter anderem die drei Streuungsparameter Spannweite, Varianz und Standardabweichung.

Die Spannweite

Das Streuungsmaß bzw. die Spannweite RR ist nichts anderes als der Abstand zwischen dem niedrigsten und dem höchsten Messwert einer Verteilung bzw. Stichprobe von Messwerten.

Die Spannweite ist:

R=xmaxxminR = x_{max} - x_{min}

Die Spannweite RR wird auch Range oder Variationsbreite genannt.

Teste dein Wissen zum Thema Standardabweichung!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Die Varianz und die Standardabweichung

Die Streuungsmaße Varianz und Standardabweichung beschreiben die Streuung der Messwerte um den Mittelwert. Wir müssen also zunächst den Mittelwert xˉ\bar{x} berechnen, indem wir alle Messwerte addieren und die Summe durch die Anzahl der Werte teilen.

Abweichung vom Mittelwert Streuungsmaße

Wusstest du schon?
Die NASA verwendet Standardabweichungen, um die Sicherheit von Raketenstarts zu gewährleisten. Durch die Analyse von Daten und Abweichungen können sie sicherstellen, dass Starts so sicher wie möglich verlaufen. Deine Mathekenntnisse könnten also eines Tages helfen, den Weltraum zu erforschen!

Die Varianz

Die Varianz beschreibt die quadrierte durchschnittliche Abweichung der Messwerte vom Mittelwert (auch mittlere quadratische Abweichung).
Meist wird für die Varianz der Messwerte xix_i die Bezeichnung Var(x)\text{Var}(x) verwendet.

Die Formel für die Varianz ist:

Var(x)=i=1n(xixˉ)2n\text{Var}(x) = \dfrac{\sum\limits_{i = 1}^{n} {(x_i - \bar{x})}^2}{n}

mit n=n = Zahl der Messungen, xˉ=\bar{x} = Mittelwert, xi=x_{i} = einzelner Messwert.

Das Quadrieren der Abweichung der einzelnen Messwerte vom Mittelwert xixˉx_i - \bar{x} hat dabei zwei wesentliche Effekte:

  • Alle Abweichungen gehen positiv in die Varianz ein, unabhängig davon, ob ein Messwert unter oder über dem Mittelwert liegt.
    Es ist daher auch möglich in der Formel xˉxi\bar{x} - x_i zu schreiben, da gilt: (xixˉ)2=(xˉxi)2{(x_i - \bar{x})^2 = (\bar{x} - x_i)^2}
  • Messwerte, die besonders weit vom Mittelwert entfernt sind, werden stärker gewichtet als solche, die nahe am Mittelwert liegen, was die Varianz besonders sensibel gegenüber Ausreißern macht.

Die Standardabweichung

Die Standardabweichung σ\sigma ist das wichtigste Streuungsmaß in der Statistik. Sie ist ein Maß für die mittlere Abweichung der gemessenen Werte xix_i einer Variablen vom Mittelwert xˉ\bar{x}. Sie entspricht der Wurzel der Varianz.

Die Formel für die Standardabweichung ist:

σ=Var(x)\sigma = \sqrt{\text{Var}(x)}

mit der Varianz Var(x)\text{Var}(x).

Anstatt σ\sigma wird als Symbol für die Standardabweichung auch SD(x)SD(x) oder ss verwendet.

Schlaue Idee
Beim Sport kannst du deine Laufzeiten über mehrere Wochen hinweg messen und die Standardabweichung berechnen. So erkennst du, wie gleichmäßig du trainierst und ob du dich verbesserst.

Interpretation von Varianz und Standardabweichung

Um zu verstehen, wie Varianz und Standardabweichung interpretiert werden können, betrachten wir ein Beispiel.

Alisa und Iwan haben eine Woche lang jeden Tag notiert, wie viele Minuten sie ihr Smartphone nutzen.

MoDiMiDoFrSaSoAlisa12070851101309590Iwan6035407050240205\begin{array}{l|c|c|c|c|c|c|c} & \text{Mo} & \text{Di} & \text{Mi} & \text{Do} & \text{Fr} & \text{Sa} & \text{So} \\ \hline \text{Alisa} & 120 & 70 & 85 & 110 & 130 & 95 & 90 \\ \hline \text{Iwan} & 60 & 35 & 40 & 70 & 50 & 240 & 205 \end{array}

Wir berechnen zunächst für beide den Mittelwert, also wie viele Minuten sie ihr Smartphone täglich durchschnittlich nutzen:

  • xˉAlisa=120+70+85+110+130+95+907=7007=100\bar{x}_{\text{Alisa}} = \dfrac{120 + 70 + 85 + 110 + 130 + 95 + 90}{7} = \dfrac{700}{7} = 100
  • xˉIwan=60+35+40+70+50+240+2057=7007=100\bar{x}_{\text{Iwan}} = \dfrac{60 + 35 + 40 + 70 + 50 + 240 + 205}{7} = \dfrac{700}{7} = 100

Damit können wir Varianz und Standardabweichung bestimmen.

Alisa:

Var(x)=(120100)2+(70100)2+(85100)2+(110100)2+(130100)2+(95100)2+(90100)27=400 + 900 + 225 + 100 + 900 + 25 + 1007=26507378,6\begin{array}{rl} \text{Var}(x) =& \large \frac{(120 - 100)^2 + (70 - 100)^2 + (85 - 100)^2 + (110 - 100)^2 + (130 - 100)^2 + (95 - 100)^2 + (90 - 100)^2}{7} \\ \\ =& \large \frac{400 ~+~ 900 ~+~ 225 ~+~ 100 ~+~ 900 ~+~ 25 ~+~ 100}{7} \\ \\ =& \large \frac{2650}{7} \\ \\ \approx& 378{,}6 \end{array}

 ~
σ=2650719,5\sigma = \sqrt{\large \frac{2650}{7}} \approx 19{,}5

Iwan:

Var(x)=(60100)2+(35100)2+(40100)2+(70100)2+(50100)2+(240100)2+(205100)27=1600 + 4225 + 3600 + 900 + 2500 + 19600 + 110257=4345076207,1{\begin{array}{rl} \text{Var}(x) =& \large \frac{(60 - 100)^2 + (35 - 100)^2 + (40 - 100)^2 + (70 - 100)^2 + (50 - 100)^2 + (240 - 100)^2 + (205 - 100)^2}{7} \\ \\ =& \large \frac{1600 ~+~ 4225 ~+~ 3600 ~+~ 900 ~+~ 2500 ~+~ 19\,600 ~+~ 11\,025}{7} \\ \\ =& \large \frac{43\,450}{7} \\ \\ \approx& 6207{,}1 \end{array}}

 ~
σ=43450778,8\sigma = \sqrt{\large \frac{43\,450}{7}} \approx 78{,}8

Fehleralarm
Die Standardabweichung kann niemals negativ sein. Sie misst die Streuung der Werte und die Streuung kann nicht negativ sein. Wenn dir das also mal passieren sollte, dass du einen negativen Wert für die Standardabweichung hast, dann hast du dich ziemlich sicher irgendwo verrechnet!

Wie können wir diese Werte interpretieren?

Obwohl Alisa und Iwan beide in der Woche durchschnittlich 100100 Minuten täglich ihr Smartphone genutzt haben, fällt auf, dass Alisa ihr Gerät die gesamte Woche über relativ gleichmäßig genutzt hat. Im Gegensatz dazu hat Iwan sein Smartphone unter der Woche deutlich weniger lang genutzt als am Wochenende. Diese sehr ungleichmäßige Verteilung der Nutzungszeiten zeigt sich auch in den deutlich höheren Werten der Varianz und Standardabweichung der Daten von Iwan im Vergleich zu Alisa.

Varianz und Standardabweichung von Zufallsgrößen

Varianz und Standardabweichung sind auch bei der Betrachtung von Zufallsgrößen wichtige Kenngrößen für die Streuung einer Zufallsvariablen um ihren Erwartungswert E(X)E(X). (manchmal auch μ\mu).

Dabei gelten die folgenden Formeln:

Var(x)=i=1n(xiμ)2pi\text{Var}(x) = \sum\limits_{i = 1}^{n} (x_i - \mu)^2 \cdot p_i

mit xi=x_i = Ausprägungen der Zufallsgröße XX, pi=P(X=xi)p_i = P(X = x_i) und μ=E(X)\mu = E(X) (Erwartungswert).

σ=Var(x)\sigma = \sqrt{\text{Var}(x)}

Für Zufallsgrößen mit einer speziellen Wahrscheinlichkeitsverteilung können Varianz und Standardabweichung aus wenigen Kenngrößen berechnet werden oder sind standardisiert.

  • Binomialverteilung:
      ~\rightarrow~ Var(x)=np(1p);\text{Var}(x) = n \cdot p \cdot (1 - p); \quad σ=np(1p)\sigma = \sqrt{np(1-p)}
  • Standardnormalverteilung:
      ~\rightarrow~ μ=0;\mu = 0; \quad σ=1\sigma = 1

Bei diesen Verteilungen können anhand der Standardabweichung unter bestimmten Voraussetzungen auch Aussagen zu Wahrscheinlichkeiten getroffen werden. Dazu werden die sogenannten Sigma-Regeln verwendet.

Ausblick – das lernst du nach Spannweite, Standardabweichung und Varianz

Vertiefe dein Wissen mit Boxplots und entdecke, wie sie mit Varianz und Standardabweichung zusammenhängen. Guck dir außerdem auch die Varianz und Standardabweichung bei einer Zufallsvariable an.

Zusammenfassung – Spannweite, Standardabweichung und Varianz

  • Die Spannweite RR bezeichnet den Abstand zwischen dem niedrigsten und dem höchstem Messwert einer Verteilung bzw. der Stichprobe. Es gilt: R=xmaxxminR = x_{max} - x_{min}.
  • Die Varianz Var(x)\text{Var}(x) beschreibt die quadrierte durchschnittliche Abweichung der Messwerte vom Mittelwert xˉ\bar{x}. Sie kann beschreiben, wie groß die Streuung der Messwerte insgesamt vom Mittelwert ist. Für die Varianz gilt:

    Var(x)=i=1n(xixˉ)2n\text{Var}(x) = \dfrac{\sum\limits_{i = 1}^{n} {(x_i - \bar{x})}^2}{n}

  • Die Standardabweichung σ\sigma ist die mittlere Abweichung der Messwerte vom Mittelwert. Im Gegensatz zur Varianz sind diese Werte nicht mehr quadriert. Die Standardabweichung lässt sich aus der Wurzel der Varianz berechnen:

    σ=Var(x)\sigma = \sqrt{\text{Var}(x)}

Häufig gestellte Fragen zum Thema Spannweite, Standardabweichung und Varianz

Transkript Standardabweichung

Der Unternehmer Cliff möchte ein eigenes Basketballteam auf die Beine stellen. Er liebt Zahlen und plant Dinge immer ganz genau, darum hasst er es, wenn etwas nicht wie erwartet läuft. In seinem Team möchte er keine Spieler haben, die mal Traumleistungen abliefern und mal miserabel sind, sondern lieber Spieler, die alle auf konstantem Niveau spielen. Um die Meisterschaft zu gewinnen, will Cliff mithilfe der Standardabweichung die Leistung der Spieler bewerten, und dann die passenden für sein Team auswählen. Eine verlässliche Quelle in einer Sport-Kneipe hat Cliff die Profile mehrerer Spieler besorgt. So besitzt er nun Tabellen, in denen die Punkte eingetragen sind, die diese Spieler in ihren letzten fünf Spielen erzielt haben. Schauen wir uns an, wie man für die Punktzahlen jedes Spielers die Standardabweichung berechnet. Die Standardabweichung ist eine Größe, die angibt, wie sehr die einzelnen Werte aus einem Datensatz mit n Elementen durchschnittlich vom Mittelwert des Datensatzes abweichen. Das Symbol für die Standardabweichung ist das Sigma, ein griechischer Kleinbuchstabe, der SO aussieht. Und die Formel für die Standardabweichung lautet wie folgt: Die Wurzel des Mittelwerts der Quadrate der Differenzen zwischen jedem einzelnen Element des Datensatzes und dem Mittelwert des Datensatzes. Jetzt können wir die Standardabweichung der Leistungen des ersten Spielers, Martin McTry, berechnen. Das hier sind seine letzten Ergebnisse. Da wir die Punktwerte für fünf Spiele kennen, ist n gleich 5. Denk dran: Den Mittelwert des Datensatzes berechnest du, indem du alle Werte des Datensatzes addierst und das Ergebnis durch die Anzahl der Werte teilst. Wir addieren also die Punkte aller Spiele dieses Spielers und teilen das Ergebnis durch 5. Martin McTry hat in seinen letzten fünf Spielen im Durchschnitt 20 Punkte gemacht. Jetzt kennen wir also den Mittelwert und können damit die Standardabweichung von McTrys erzielten Punkten berechnen. Dafür setzen wir einfach n = 5 ein und den Mittelwert des Datensatzes, also 20, und subtrahieren davon jeden der Punktwerte x1 bis x5. Wir rechnen die Klammern aus, quadrieren, addieren und ziehen zuletzt die Wurzel aus 38 Fünfteln. So erhalten wir gerundet 2,757. Wenn wir die Punkte, die Martin McTry in den letzten 5 Spielen erzielt hat, in ein Schaubild eintragen, können wir den Mittelwert und die Standardabweichung besser erkennen. Der Mittelwert entspricht dieser Geraden, die überall den y-Wert 20 besitzt. Zeichnen wir oberhalb und unterhalb dieser Geraden nun jeweils Streifen ein, deren Breite der Standardabweichung entspricht, dann liegen die meisten Punkte innerhalb des Streifens. Je breiter dieser Streifen ist, desto mehr weichen die einzelnen Resultate im Durchschnitt vom Mittelwert ab. Ist er schmaler, liegen die einzelnen Ergebnisse näher am Mittelwert. Der zweite Spieler, den Cliff sich anschaut, ist Lance Layton. Seine Punktetabelle sieht so aus. Auch für Layton liegen die Punktwerte von fünf Spielen vor, n ist also wieder gleich 5. Nun brauchen wir den Mittelwert der Punktetabelle, also addieren wir alle Punktwerte und teilen das Ergebnis durch 5. Lance Layton hat in seinen letzten fünf Spielen ebenfalls im Durchschnitt 20 Punkte erzielt. Schauen wir mal, ob seine Standardabweichung so gering ist wie die von Martin McTry. Wir setzen n=5 in die Formel für die Standardabweichung ein, außerdem auch den Mittelwert von 20 und die Punktwerte x1 bis x5. Das rechnen wir wieder aus. Und ziehen zum Schluss die Wurzel aus 336 Fünfteln. So erhalten wir gerundet 8,198. Auch für Lance Layton können wir die Resultate in ein Schaubild übertragen. Der Mittelwert ist wieder eine Gerade, die überall den y-Wert 20 besitzt. Die Streifen für die Standardabweichungen sehen so aus – ganz schön breit! Wieder liegen die meisten Resultate innerhalb dieses Streifens. Der Vergleich von Martin McTrys und Lance Laytons Ergebnissen zeigt, dass beide in den letzten fünf Spielen im Durchschnitt 20 Punkte erzielt haben. Mit einer Standardabweichung von 2,757 zeigt Martin McTry aber eine weitaus konstantere Leistung als Lance Layton mit seiner Standardabweichung von 8,198. Wir können auch die beiden Schaubilder miteinander vergleichen. Hier sehen wir auf einen Blick, dass die Mittelwerte der beiden Spieler gleich sind: Aber Martins Streifen ist deutlich schmaler als der von Lance. Auch das bedeutet: Martin hat eine viel konstantere Leistung gebracht als Lance, dessen Resultate deutlich stärker schwanken. Nachdem Cliff für jeden Spieler dessen Standardabweichung berechnet hat, kann er sein Team zusammenstellen. Cliff ist schon ganz aufgeregt – die Meisterschaft kann kommen! Von wegen verlässliche Quelle. Wahrscheinlich waren das ihre Ergebnisse beim Mensch ärgere dich nicht.

Standardabweichung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Standardabweichung kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.244

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.669

Lernvideos

37.113

Übungen

32.360

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden