Gegenseitige Lage Ebene-Ebene

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Gegenseitige Lage Ebene-Ebene
Zwei Geraden können sich schneiden, parallel, windschief oder identisch sein. Wie können zwei Ebenen zueinander liegen? Diese Frage beantworte ich dir hier. Alles was du brauchst, sind räumliche Vorstellungskraft und Methoden aus der Vektorrechnung. Stell dir vor, du bist in der Disco. Man sieht überall bunte Lichter, und manche Strahler projizieren sogar richtige Farbflächen. Wie können jetzt zwei Farbflächen zueinander liegen? Einmal können sie parallel sein. Das kannst du dir sicher gut vorstellen. Weiter können die beiden Lichtebenen identisch sein. Die letzte Möglichkeit ist, dass sich die Ebenen schneiden. Anders als bei der gegenseitigen Lage von Geraden besitzen zwei Ebenen aber keinen einzelnen Schnittpunkt, sondern eine sogenannte Schnittgerade. Ich zeige dir, wie du mit bestimmten Berechnungen die Fälle unterschieden kannst. Viel Spaß beim Lernen!
Transkript Gegenseitige Lage Ebene-Ebene
Hallo. Ich bin Giuliano. Und ich möchte mit dir zusammen, die gegenseitige Lage von zwei Ebenen im Raum bzw. im R(3) untersuchen. Es gibt genau drei Möglichkeiten, wie zwei Ebenen im Raum zueinander liegen können. Entweder, die beiden Ebenen schneiden sich in der sogenannten Schnittgeraden. Dann gibt es noch die Möglichkeit, dass die beiden Ebenen echt parallel sind oder die beiden Ebenen sind identisch. Ich möchte mit dir gerne kurz das allgemeine Lösungsverfahren vorstellen, wie man die gegenseitige Lage von zwei Ebenen untersuchen kann und dann zeige ich dir an einem konkreten Beispiel, wie man das berechnen kann. Starten wir mit den Ebenengleichungen. Es gibt einmal die Darstellung in der Parametergleichung. Das heißt Vektor x gleich Stützvektor p plus erster Parameter r mal Richtungsvektor- Nein, mal ersten Spannvektor u plus zweiten Parameter s mal zweiten Spannvektor v. Dann gibt es noch die Normalengleichung Vektor x minus Stützvektor p im Skalarprodukt mit dem Normalenvektor n gleich null. Der Normalenvektor ist, beziehungsweise steht senkrecht auf der Ebene. Und dann haben wir noch die Koordinatengleichung: n1x + n2y + n3z = C. n1, n2, n3 sind die allgemeinen Koordinaten des Normalenvektors und x, y, z sind die allgemeinen Koordinaten eines Punktes in dieser Ebene. Ihr könnt alternativ auch x1, x2 und x3 wählen. Also es ist am einfachsten, die gegenseitige Lage von zwei Ebenen zu untersuchen, wenn man die eine Ebene in der Parametergleichung in die andere Ebene in der Koordinatengleichung einsetzt. Es gibt auch noch andere Verfahren, aber ich zeige dir nur dieses, da dies wirklich das schnellste und sicherste ist. Wir beginnen mit dem Beispiel: Wir haben die folgende Parametergleichung der Ebene M: Vektor x = (3,1,-1) + r×(1,0,-1) + s×(2,1,0). Und jetzt gebe ich dir noch eine zweite Ebene in der Koordinatengleichung. Wenn die in der Normalengleichung gegeben sein sollte, dann müsst ihr die natürlich umformen oder wenn die Parametergleichung gegeben ist auch einfach in die Koordinatengleichung umformen. Und wir haben hier jetzt die Ebene x + 2y - z = 10. Und wir setzten jetzt eben die allgemeinen Koordinaten x, y, z, die wir ja hier durch die Parametergleichung gegeben haben, in diese Ebenengleichung ein. Das möchte ich jetzt also einmal vorführen. So, da sieht dann eben so aus: also M in N einsetzen. Die allgemeine Koordinate x ist eben erste Zeile der Parametergleichung. Das heißt, dort haben wir (3+r+2s) + 2×(1+0+s) - (-1 - r) = 10. Jetzt wollen wir das hier äquivalent umformen, indem wir einfach die Klammern auflösen. Also 3 + r + 2s + 2 + 2s + 1 + r = 10. Und jetzt fassen wir hier den Ausdruck noch zusammen: 3 + 2 + 1 = 6, r + r = 2r, 2s + 2s = 4s gleich 10. Jetzt subtrahieren wir die ganze Gleichung mit 6 und 4s und erhalten dann 2r = 4 - 4s. Und als letztes teilen wir dann noch durch zwei und erhalten r = 2 - 2s. Ihr könnt die ganze Gleichung auch nach s umformen. Aber wichtig ist, was hier unten herauskommt. Wir haben eine Abhängigkeit der Variablen r von s beziehungsweise s von r erhalten. Und dieser Fall ist eben genau der erste, den ich hier einmal hingeschrieben habe, mit den allgemeinen Angaben r = a*s + b, wobei a und b reelle Zahlen sind. Und in diesem Falle, genauso wie wir das hier haben, schneiden sich diese beiden Ebenen in der sogenannten Schnittgeraden. Und diese Schnittgerade können wir jetzt hier noch konkret bestimmen. Indem wir dieses r, in Abhängigkeit von s wieder zurück in die Parametergleichung von M einsetzen. Das möchte ich jetzt hier auch einmal vorführen. So. Also wir wollen r in die Parametergleichung von M einsetzen. Das heißt, wir erhalten eine Gerade g, die nur noch von dem Parameter s abhängig ist. Und das ist eben genau unsere Schnittgerade. Also: Wir ersetzen jetzt für r 2-2s. Also: x = (3,1,-1) + (2 - 2s)×(1,0,-1) + s×(2,1,0). Wenn wir das ganze jetzt auflösen, hier können wir das Distributivgesetz anwenden. Beim Skalarprodukt erhalten wir g: Vektor x = (3,1,-1) + (2,0,-2) und dann -2s multipliziert. Hier ist eine Multiplikation dazwischen. Ich kann aber auch erst -2 multiplizierten uns s vorschreiben. Das heißt hier erhalten wir (-2,0,2) und hinten übernehmen wir einfach den Teil mit s. Und jetzt können wir das final zusammenfassen. Hier haben wir die normale Vektoraddition und hinten können wir auch einfach das s mit dem Distributivgesetz ausklammern. Das heißt hier erhalten wir den neuen Stützvekror (5,1,-3) + s×(0,1,2). Das heißt hier erhalten wir jetzt die Parametergleichung der Schnittgeraden von M und N. Es gibt natürlich noch zwei weitere Möglichkeiten, die ich dir zu Beginn gezeigt habe. Es kann auch sein, dass am Ende dieser Gleichung eine wahre Aussage steht. Zum Beispiel 5=5 oder 0=0. In diesem Falle sind die beiden Ebenen identisch. Das kannst du hier auch noch einmal allgemein im Raum abgebildet sehen. Und die dritte Möglichkeit ist eben, dass dort eine falsche Aussage herauskommt hier unten. Zum Beispiel -2=3 oder 5=8. Allgemein gesagt a=b, wenn a ungleich b ist. Und wenn wir eben eine falsche Aussage herausbekommen, dann sind diese beiden Ebenen echt parallel. Das siehst du hier jetzt auch einmal noch abgebildet. Jetzt möchte ich gerne zusammenfassen, was du heute alles gelernt hast: Wir wollten die gegenseitige Lage von zwei Ebenen im Raum untersuchen. Dazu musst du die Parametergleichung einer Ebene in die Koordinatengleichung der anderen Ebene einsetzen und eine Gleichung lösen. Es gibt drei Möglichkeiten: Entweder haben r = as + b. Dann haben wir eine Schnittgerade oder es kommt eine wahre Aussage heraus, dann sind die Ebenen identisch. Oder eben es kommt eine falsche Aussage heraus, dann sind diese beiden Ebenen echt parallel. In unserem Beispiel haben wir eben herausgefunden, dass die beiden Ebenen M und N eine Schnittgerade g besitzen. Ich hoffe, dass du das alles verstanden hast und Spaß am Video hattest. Tschau und bis zum nächsten Mal. Dein Giuliano.
Gegenseitige Lage Ebene-Ebene Übung
-
Benenne die Ebenengleichungen und die verschiedenen Lagebeziehungen.
-
Stelle dar, wie du die Schnittgerade der beiden Ebenen bestimmst.
-
Entscheide, welche Aussagen zu den beiden Ebenen und passen.
-
Setze die gegebenen Ebenen in Koordinatenform zu der Ebene in Beziehung.
-
Fasse dein Wissen zu den verschiedenen Ebenengleichungen zusammen.
-
Prüfe die Lagebeziehung der Ebene zu der Ebene in Abhängigkeit von und .
9.317
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.721
Lernvideos
37.183
Übungen
32.414
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt