Scheinbrüche und unechte Brüche
Was sind Scheinbrüche? Scheinbrüche lassen sich als ganze Zahlen darstellen und sind Brüche, bei denen der Zähler ein Vielfaches des Nenners ist. Entdecke, wie man Scheinbrüche umwandeln kann und was unechte Brüche sind. Interessiert? Dies und vieles mehr findest du im folgenden Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Scheinbrüche und unechte Brüche
Was ist ein Scheinbruch?
In der Mathematik kommen unechte Brüche oder Scheinbrüche in der Bruchrechnung vor. Man verwendet Brüche meistens, um Zahlen darzustellen, die keine ganzen Zahlen sind. Scheinbrüche dagegen sind Brüche, die sich auch als ganze Zahlen darstellen lassen. Man kann einen Scheinbruch immer so umschreiben, dass er gar kein Bruch mehr ist. Ein unechter Bruch ist ein Bruch, den man in eine ganze Zahl und einen echten Bruch umwandeln kann.
Scheinbrüche – Definition
Fünf Fünftel einer Pizza ergeben eine ganze Pizza. Daher ist der Bruch dieselbe Zahl wie die ganze Zahl . Der Bruch heißt Scheinbruch oder unechter Bruch. Ein Bruch heißt Scheinbruch, wenn der Zähler ein ganzzahliges Vielfaches des Nenners ist. Du kannst jeden solchen Bruch zu einem Bruch mit dem Nenner kürzen. So lässt sich jeder Scheinbruch in eine ganze Zahl umwandeln. Um einen Scheinbruch zu erkennen, kannst du überprüfen, ob der Zähler in der Einmaleinsreihe des Nenners vorkommt.
Scheinbrüche – Beispiel
Um zu erkennen, dass ein Scheinbruch ist, gehst du die Siebenerreihe durch, denn der Nenner ist . Der Zähler kommt in der Siebenerreihe vor: . Du kannst also mit kürzen und erhältst:
Der Bruch ist also ein Scheinbruch und lässt sich auch als schreiben.
Unechte Brüche
Einen Bruch, bei dem der Zähler größer ist als der Nenner, nennt man unechten Bruch. Bei einem echten Bruch dagegen ist der Zähler kleiner als der Nenner. Da der Zähler eines unechten Bruchs größer ist als der Nenner, enthält er den Nenner oder ein Vielfaches des Nenners. Schreibst du den Zähler eines unechten Bruchs als Summe aus dem größtmöglichen Vielfachen des Nenners und dem Rest, so erhältst du einen Scheinbruch und einen echten Bruch. Den Scheinbruch kannst du als ganze Zahl schreiben:
Auf diese Weise lässt sich jeder unechte Bruch in eine ganze Zahl und einen echten Bruch, also in einen gemischten Bruch umwandeln.
Kurze Zusammenfassung vom Video Scheinbrüche und unechte Brüche
In diesem Video werden dir Scheinbrüche und unechte Brüche verständlich erklärt. Du erfährst, wie man Scheinbrüche in ganze Zahlen umwandeln kann. Außerdem lernst du, wie man einen unechten Bruch in eine ganze Zahl und einen echten Bruch umwandeln kann.
Scheinbrüche und unechte Brüche Übung
-
Definiere die Begriffe „Scheinbruch“, „unechter Bruch“ und „echter Bruch“.
-
Gib an, um welche Bruchart es sich bei den gegebenen Brüchen handelt.
-
Ordne die gegebenen Brüche den jeweiligen Brucharten zu.
-
Erschließe die zugehörigen gemischten Zahlen.
-
Vervollständige die Übersicht zu einem Bruch sowie die Eigenschaften echter und unechter Brüche.
-
Ermittle die jeweiligen Brüche.
9.326
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.725
Lernvideos
37.194
Übungen
32.426
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt