Genetischer Code – Eigenschaften und Bedeutung
Genetischer Code – Biologie: Der genetische Code bestimmt, wie die DNA in Proteine umgewandelt wird. Erfahre, wie Transkription und Translation funktionieren und warum mehrere Codons für eine bestimmte Aminosäure stehen. Interessiert? Das und mehr erfährst du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Genetischer Code – Eigenschaften und Bedeutung
Genetischer Code – Biologie
Weißt du, was alle Lebewesen – von Einzellern bis hin zu komplexen Organismen – gemeinsam haben? Den genetischen Code. Dieser gibt, einfach erklärt, vor, wie in den Zellen eines Organismus die Erbinformation in ein fertiges Protein übersetzt wird. Damit wollen wir uns im folgenden Text genauer beschäftigen.
Wo findet man den genetischen Code?
Zunächst wollen wir uns die Prozesse der Transkription und Translation in Erinnerung rufen: Bei der Transkription wird im Zellkern eine Kopie der DNA erstellt. Diese Kopie, die man als mRNA bezeichnet, ist der DNA komplementär. Aufgrund der festgelegten Basenpaarungen bei der Transkription enthält die mRNA eine analoge Basensequenz zur DNA. Anschließend wird die mRNA zu den Ribosomen der Zelle transportiert. Dort findet die Translation statt: Durch Ablesen der mRNA‑Basensequenz werden einzelne Aminosäuren zur Polypeptidkette eines Proteins zusammengesetzt. Die Übersetzung der Basensequenz in Aminosäuren passiert natürlich nicht willkürlich: Hier kommt der genetische Code ins Spiel.
Was ist der genetische Code?
Vielleicht kannst du dir jetzt schon denken, welche Funktion der genetische Code erfüllt. Schauen wir uns hierzu eine kurze Definition an.
Genetischer Code – Definition:
Der genetische Code gibt vor, anhand welcher Regeln die Basensequenz der mRNA in eine Aminosäuresequenz übersetzt wird.
Dabei wird einem Basentriplett, also drei aufeinanderfolgenden Basen, jeweils eine bestimmte Aminosäure zugeordnet. Ein solches Triplett bezeichnet man auch als Codon. Insgesamt ergibt sich so ein Leseraster, das in Dreierschritten übersetzt wird. Dabei gilt, dass sich diese Dreierschritte nicht überlappen. Eine Base gehört also immer zu einem bestimmten Triplett. Doch wo beginnt dieses Leseraster und wo hört es auf? Dafür gibt es ein Start‑Codon und drei verschiedene Stopp‑Codons. Diese Codons geben die Start- und Endpunkte der Translation an.
Genetischer Code – Eigenschaften und Merkmale
Den genetischen Code kann man mithilfe der sogenannten Code‑Sonne abbilden. Diese stellt, von innen nach außen abgelesen, alle möglichen Dreierkombinationen von Basen dar. Außerdem zeigt sie im äußeren Ring an, welche Aminosäure sich aus dem entsprechenden Basentriplett ergibt.
Man kann außerdem erkennen, dass das Start‑Codon eine Aminosäure codiert, die Stopp‑Codons hingegen nicht. Sie dienen lediglich dem Abbruch der Translation. Aus der Code‑Sonne ergibt sich noch eine weitere Eigenschaft, die wir uns nun ansehen wollen.
Wieso bezeichnet man den genetischen Code als degeneriert?
Da es insgesamt vier Basen gibt, gibt es insgesamt verschiedene Dreierkombinationsmöglichkeiten und somit 64 mögliche Codons. Davon codieren 61 Codons Aminosäuren, die restlichen drei dienen ausschließlich als Stopp‑Codons. Da es lediglich 20 verschiedene Aminosäuren gibt, codieren für fast alle Aminosäuren mehrere Tripletts. Das kannst du auch daran erkennen, dass in manchen Fällen (zum Beispiel für Leucin (LEU) oder Prolin (PRO)) die letzte, also äußerste, Base keinen Einfluss mehr auf die Codierung hat.
Einen Code bezeichnet man dann als degeneriert (redundant, mehrfach vorhanden), wenn eine bestimmte Einheit durch mehrere Ausdrücke codiert wird. Das ist hier also der Fall, da eine bestimmte Aminosäure nicht nur durch ein einziges Triplett codiert wird, sondern immer durch mehrere Tripletts. Man kann von einem Triplett auf die Aminosäure schließen, aber nicht umgekehrt.
Ist der genetische Code universell?
Das Grundprinzip des genetischen Codes ist für alle Lebewesen gleich. Auch die Codierung an sich, also welches Codon für welche Aminosäure steht, ist bis auf wenige Ausnahmen immer dieselbe. Unterschiede gibt es zum Beispiel bei Mitochondrien, die eine eigene DNA besitzen. Hier gibt es mehrere Abwandlungen des Codes. Auch Wimpertierchen und einige Bakterien zeigen kleine Abweichungen im genetischen Code. Da die Ausnahmen sehr selten sind, gilt der genetische Code insgesamt als universell.
Genetischer Code - Zusammenfassung
Was versteht man unter einem genetischen Code? Wo findet er Anwendung? Diese und noch mehr Fragen werden in diesem Video geklärt. Auch zum Thema genetischer Code findest du interaktive Aufgaben und ein Arbeitsblatt, sodass du dein neu gewonnenes Wissen direkt testen kannst.
Transkript Genetischer Code – Eigenschaften und Bedeutung
Hallo! Ein Bakterium und ein Kirschbaum haben mehr gemeinsam, als du auf den ersten Blick vermuten würdest. Denn alle Lebewesen von den kleinsten Zellen bis zu den komplexesten, vielzelligen Organismen haben eines gemeinsam. Ihre Erbinformation ist bis auf wenige Ausnahmen auf die gleiche Weise verschlüsselt. Diese Verschlüsselung nennt man auch genetischer Code und diesen möchte ich dir jetzt erklären. Dir ist sicher bekannt, dass die DNA zunächst in RNA transkribiert und dann in ein Protein translatiert wird. Die Proteine erfüllen dann vielfältige Aufgaben in jedem Organismus. Aber wie genau geht das, wenn doch die DNA aus nur vier verschiedenen Nukleotiden und ein Protein aus vielen Aminosäuren besteht? Wie kann in einer Abfolge von vier verschiedenen Nukleotiden die Reihenfolge von 20 Aminosäuren verschlüsselt sein? Wenn jedes Nukleotid für eine Aminosäure stünde, könnten in der DNA nur vier Aminosäuren verschlüsselt sein. Bei Zweierkombinationen der Nukleotiden, wie zum Beispiel G-C oder A-G, ergeben sich vier hoch zwei, also 16 mögliche Aminosäuren. Erst Dreierkombinationen in der DNA wie A-G-A oder T-C-G ergeben vier hoch drei, also 64 mögliche Aminosäuren. Und tatsächlich hat man herausgefunden, dass jeweils drei Nukleotide der DNA, sogenannte Codogene, beziehungsweise in der mRNA, die Codons oder Tripletts, einer Aminosäure im Protein entsprechen. Die Gesamtheit aller Codons nennen wir den genetischen Code. Die 64 möglichen Codons der mRNA siehst du in dieser Code-Sonne. Du findest hier die Nukleotide G, U, A und C in allen möglichen Dreierkombinationen. Du siehst hier auch, welchen Aminosäuren die Codons entsprechen. Da nur 20 Aminosäuren vom Menschen hergestellt werden, gibt es natürlich viel mehr mögliche Codons als Aminosäuren. Daher wird die Mehrzahl der Aminosäuren durch mehrere Codons beschrieben. Damit hast du soeben auch schon eine Besonderheit des genetischen Codes kennengelernt. Dadurch, dass eine Aminosäure durch mehrere Codons beschrieben ist, kann man aus einer Aminosäuresequenz nicht auf die DNA-Sequenz zurückschließen. Der genetische Code ist degeneriert oder redundant. Ist dir aufgefallen, dass eine Aminosäuren oft schon durch die ersten zwei Nukleotide im Codon festgelegt wird? Das findest du zum Beispiel bei der Aminosäure Prolin, denn die Nukleotide für Prolin beginnen immer mit C-C. Das dritte Nukleotid im Codon kann G, A, C oder U sein. Zudem hast du zu Beginn schon gehört, dass der genetische Code bis auf wenige Ausnahmen allen Organismen gemeinsam ist. Und zwar gilt das für die einfachsten Organismen wie Bakterien oder Viren, bis hin zu den komplexen Organismen wie den Landpflanzen oder Tieren. Der genetische Code ist also auch universell. Außerdem ist der genetische Code nicht überlappend, sodass jedes Nukleotid in der DNA nur in einem Codon der mRNA auftaucht und damit nur für die Codierung einer Aminosäure verwendet wird. Bei einem überlappenden Code würde eine Base in zwei oder sogar drei Codons genutzt. Zudem ist der Code kommafrei. Es gibt also keine Zeichen, die auf den Anfang oder das Ende eines Codons hinweisen würden. Wie aber wird festgelegt, wo ein Protein beginnt und wo es endet? Das wird durch besondere Codons bestimmt, nämlich durch Start- und Stoppcodons. Die Sequenz des Startcodons ist A-U-G und es kodiert gleichzeitig für die Aminosäure Formyl-Methionin. Stoppcodons gibt es drei: U-A-A, U-A-G und U-G-A. Sie kodieren für keine Aminosäure, sondern bedeuten ausschließlich, dass ein Kettenabbruch bei der Proteinsynthese am Ribosom stattfindet. Die Nukleotidsequenz von einem Start- zu einem Stoppcodon heißt auch offenes Leseraster oder Open Reading Frame, kurz ORF. Taucht die Sequenz des A-U-G Startcodons innerhalb eines ORF auf, wird einfach die Aminosäure Formyl-Methionin in das Protein eingebaut. Du hast in diesem Video, dass Bakterien, Pflanzen und ebenso der Mensch eines gemeinsam haben. Nämlich die Verschlüsselung der Erbinformationen, den genetischen Code. Der genetische Code ist aber nicht nur universell, sondern degeneriert, nicht überlappend und kommafrei. Spezielle Codons, die Start- und Stoppcodons, legen fest, wo ein Protein beginnt und endet. Tschüss.
Genetischer Code – Eigenschaften und Bedeutung Übung
-
Gib an, für welche Aminosäure das gegebene Triplett codiert.
-
Ordne den Eigenschaften des genetischen Codes ihre entsprechende Übersetzung zu.
-
Übersetze den codogenen Strang der DNA in die entsprechende Aminosäuresequenz.
-
Beurteile, welche Änderung sich in der Aminosäuresequenz ergibt.
-
Nenne Eigenschaften des genetischen Codes.
-
Überlege, warum die DNA-Sequenz nur die Primärstruktur der Proteine vorgibt.
9.317
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.722
Lernvideos
37.189
Übungen
32.420
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Biologie
- Was ist DNA
- Organe Mensch
- Meiose
- Pflanzenzelle
- Blüte Aufbau
- Feldmaus
- Chloroplasten
- Chlorophyll
- Rna
- Chromosomen
- Rudimentäre Organe
- Wirbeltiere Merkmale
- Mitose
- Seehund
- Modifikation
- Bäume Bestimmen
- Metamorphose
- Synapse
- Synapse Aufbau und Funktion
- Ökosystem
- Amöbe
- Blobfisch
- Phänotyp
- Endoplasmatisches Retikulum
- Karyogramm
- RGT Regel
- Biotop
- Eukaryoten
- Calvin-Zyklus
- Codesonne
- Fotosynthese
- Allel
- Ribosomen
- Golgi-Apparat
- Mitochondrien
- Genotyp
- Zellorganellen
- Phospholipide
- Vakuole
- Gliazellen
- Nahrungskette Und Nahrungsnetz
- Phagozytose
- Vesikel
- Biozönose
- tRNA
- Sympatrische Artbildung
- Allopatrische Artbildung
- Interphase
- Schlüssel-Schloss-Prinzip
- Das Rind Steckbrief
Hallo N Pistol001,
der Prozess der Übersetzung der Basensequenz der mRNA in eine Aminosäuresequenz wird als Translation bezeichnet. Als Proteinbiosynthese wir der gesamte Prozess der Proteinherstellung bezeichnet. Zur Proteinbiosynthese gehört also neben der Translation noch die vorgeschaltete Transkription. Die Transkription ist das „Umschreiben“ der DNA in die Transportform mRNA.
Hier ein Link zum Video „Translation“:
https://www.sofatutor.com/biologie/videos/translation
Selbstverständlich kannst du auch gerne unsere Suchfunktion nutzen und so weitere Videos zur „Proteinbiosynthese“ und „Translation“ finden.
Ich hoffe, das hilft dir weiter.
Beste Grüße aus der Redaktion