Prozessierung – RNA-Modifikation bei Eukaryoten
Entdecke die faszinierende Welt der RNA-Prozessierung bei Eukaryoten! Erfahre, wie die prä-mRNA modifiziert wird, um eine Vielzahl von Proteinen zu produzieren. Von Capping bis Spleißen, versteh die Schritte dieses lebenswichtigen Prozesses. Interessiert? Tauche ein und erweitere dein Verständnis!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Prozessierung – RNA-Modifikation bei Eukaryoten
Prozessierung – RNA-Modifikation bei Eukaryoten – Biologie
Hast du gewusst, dass im menschlichen Organismus schätzungsweise über 300 000 verschiedene Proteine vorkommen? Dabei haben wir nur 30 000 bis 40 000 Gene, die für diese Proteine codieren. Vielleicht fragst du dich, wie das überhaupt möglich ist? Das Geheimnis ist, dass nach der Transkription noch einige Modifikationen an der RNA stattfinden. Man fasst diese Veränderungen an der RNA als sogenannte RNA-Prozessierung zusammen. Das klingt zunächst etwas kompliziert, ist es aber gar nicht!
Wir erklären dir in einfachen Worten, was Transkription bedeutet, was bei der anschließenden RNA-Prozessierung passiert, und zeigen dir, in welche Teilschritte sie sich gliedert. Außerdem erfährst du etwas über die Unterschiede der Transkription bzw. Proteinbiosynthese bei Pro- und Eukaryoten.
RNA-Prozessierung – Definition
Der Ort der Prozessierung oder Reifung der RNA ist der Zellkern. Damit die RNA-Prozessierung stattfinden kann, wird zunächst mittels Transkription eine Kopie der DNA erstellt: die sogenannte „prä-mRNA“.
Transkriptionsablauf
Was ist nun die Transkription genau und wo findet sie statt? Die wesentliche Funktion der Transkription ist die Bereitstellung der prä-mRNA. Die Transkription – also das Umschreiben von DNA in RNA – ist neben der anschließenden Translation (Übersetzen von RNA zum Protein) wesentlicher Bestandteil der Proteinbiosynthese. Der Ort der DNA-Transkription ist der Zellkern.
Der Vorgang der Transkription unterteilt sich in drei Phasen:
- Initiation (Start der Transkription)
- Elongation (Lesen des codogenen Einzelstrangs)
- Termination (Ende der Transkription)
Das wichtigste Enzym der Transkription ist die RNA-Polymerase. Sie entwindet die DNA, trennt die Wasserstoffbrückenbindungen und synthetisiert die prä-mRNA.
Die im Zellkern transkribierte prä-mRNA ist eine Art Skizze. Sie muss auf verschiedenste Arten verändert werden, damit aus ihr viele verschiedene Proteine entstehen können.
Vielleicht kannst du dir jetzt auch schon selbst erklären, wann die RNA-Prozessierung stattfindet? Die RNA-Prozessierung schaltet sich genau zwischen Transkription und Translation, weshalb sie auch als post-transkriptionelle Modifikation bezeichnet wird.
RNA-Prozessierung – Capping
Was passiert im ersten Schritt der Prozessierung beim Capping? Das Capping schützt das 5'-Ende der prä-mRNA durch das Anbinden eines modifizierten Guaninnukleotids – einer 5'-Cap-Struktur. Sie schützt quasi wie eine Kappe das 5'-Ende vor dem Abbau durch sogenannte Exonukleasen und ist für das Ausschleusen aus dem Zellkern und bei der Initiation der Translation von Bedeutung. Das Capping erfolgt co-transkriptionell, also während der Transkription.
RNA-Prozessierung – Polyadenylierung
Im zweiten Schritt – der Polyadenylierung – wird das 3'-Ende durch einen sogenannten Poly-A-Schwanz geschützt. Dieser besteht aus einer langen Kette aus 50 bis 200 Adeninnukleotiden. Diese Modifikation erfolgt post-transkriptionell – also nach Beendigung der eigentlichen Transkription.
In den ersten beiden Teilschritten der RNA-Prozessierung wird die prä-mRNA an beiden Enden, dem 5'- und dem 3'-Ende, modifiziert und so vor dem Abbau durch Enzyme geschützt. Gleichzeitig sind diese Modifikationen Reifungssignale, die anzeigen, dass die mRNA ins Zytoplasma exportiert werden kann. Außerdem sind sie notwendig, damit ein Ribosom an das 5'-Ende der mRNA binden und mit dem Zusammenbau des Proteins beginnen kann. Damit es dazu kommt, fehlen noch zwei weitere Prozessierungsschritte: das Editing und das Spleißen.
RNA-Prozessierung – Editing
Eine weitere post-transkriptionelle Modifikation ist das RNA-Editing. Dabei werden Nukleotide eingefügt oder entfernt und Nukleobasen oder Ribosen chemisch verändert. So können nachträglich die Nukleotidsequenzen der mRNA verändert und viele verschiedene Proteinsynthesen ermöglicht werden.
RNA-Prozessierung – Spleißen
Wann passiert nun das Spleißen? Das Spleißen ist der letzte Schritt in der RNA-Prozessierung von der prä-mRNA zur reifen mRNA. Kannst du dir vorstellen, warum das Spleißen so wichtig ist? Die nicht codierenden Introns müssen zunächst aus dem Mosaikgen herausgeschnitten werden. Die Introns bilden Schleifen, sodass die Enden der codierenden Exons dicht beieinander liegen und genau zusammengefügt werden können.
Definitionsgemäß übernimmt das Spleißen ein großer Enzymkomplex – das Spleißosom. Warum das Spleißen nur bei Eukaryoten stattfindet, erklärt sich durch das Fehlen der Introns bei den Prokaryoten. Es gibt unterschiedliche Formen der Genregulation über das Spleißen. Dabei unterscheidet man das konstitutive und das alternative Spleißen. Beim konstitutiven Spleißen werden alle Exons des Gens zusammengefügt. Dagegen wird beim alternativen Spleißen variiert. Die Exons und Introns eines Gens werden nicht immer auf die gleiche Weise ausgeschnitten und zusammengefügt. Das erklärt auch, warum alternatives Spleißen so wichtig ist: So können viele verschiedene Proteine aus einem Gen entstehen.
Auf der folgenden Abbildung kannst du dir nochmals alle Schritte, die bei der Prozessierung ablaufen, ansehen:
Wo findet nun die Translation bei Eukaryoten statt? Sind die vier Schritte der RNA-Prozessierung abgeschlossen, erfolgt der Export der fertigen mRNA durch die Kernporen und der Transport zum Ribosom ins Zytoplasma. Hier beginnt der eigentliche Zusammenbau der Proteine nach der Vorgabe der mRNA: die Translation.
RNA-Prozessierung – Steckbrief
In der folgenden Tabelle werden nochmals die wichtigsten Fragen zur RNA-Prozessierung beantwortet:
Wo findet die RNA-Prozessierung statt? | Im Zellkern! |
Wann findet die RNA-Prozessierung statt? | Zwischen Transkription und Translation als post-transkriptionelle Modifikation! |
Warum findet die RNA-Prozessierung statt? | Sie ermöglicht eine enorme Vielfalt an Proteinen! |
Vergleich Proteinbiosynthese – Pro- und Eukaryoten
In diesem Abschnitt vergleichen wir die Proteinbiosynthese bei Prokaryoten und Eukaryoten:
Proteinbiosynthese | Prokaryoten | Eukaryoten |
---|---|---|
DNA | frei im Zytoplasma | im Zellkern |
RNA-Prozessierung | nein – kurzlebige mRNA | ja – geschützte mRNA |
Spleißen | nein – keine Introns | ja – Introns vorhanden |
Translation | schnell | Reife mRNA muss zunächst aus dem Zellkern zu den Ribosomen transportiert werden. |
RNA-Prozessierung – Zusammenfassung
Die mRNA bei Eukaryoten wird 4-fach modifiziert. Das nennt man Prozessierung. Die Enden werden durch eine 5'-Cap-Struktur und den Poly-A-Schwanz vor einem Abbau geschützt. Durch Editing werden Nukleotide herausgeschnitten oder hinzugefügt und Strukturen chemisch verändert. Beim Spleißen werden nicht codierende Introns des Mosaikgens in Schleifen herausgeschnitten. Alle Modifikationen erfolgen im Zellkern. Mit Ausnahme der 5'-Cap-Struktur sind alle post-transkriptionell.
Nach Umwandlung der prä-mRNA in die mRNA wird diese zum Ribosom transportiert. Die Translation beginnt. Bei der Proteinbiosynthese der Prokaryoten gibt es keine Prozessierung der RNA. Die mRNA hat keine Introns und ist viel kurzlebiger. Proteine werden in unmittelbarer Nähe zur DNA und viel schneller translatiert. Damit kennst du nun einige wichtige Gründe, warum die prokaryotische mRNA nicht prozessiert wird.
Die Vielfalt der Proteine ist bei den Prokaryoten viel kleiner als bei den Eukaryoten. Die vielen verschiedenen Modifikationen der eukaryotischen RNA-Prozessierung ermöglichen es, dass am Ende aus 30 000 bis 40 000 Genen im Erbmaterial rund 300 000 verschiedene Proteine entstehen können.
Auch zum Thema Prozessierung – RNA-Modifikation bei Eukaryoten haben wir einige interaktive Übungen und Arbeitsblätter vorbereitet. Du kannst dein neu gewonnenes Wissen also direkt testen. Viel Spaß!
Transkript Prozessierung – RNA-Modifikation bei Eukaryoten
Hallo! Heute unternehmen wir eine Reise in deinen Körper. Hast du gewusst, dass im menschlichen Organismus über 300.000 verschiedene Proteine vorkommen? Diese Zahl wird zumindest geschätzt. Allerdings haben wir nur 30.000 bis 40.000 Gene, die für diese Proteine kodieren. Wie ist das möglich? Das Geheimnis ist, dass nach der Transkription noch einige Modifikationen an der RNA stattfinden: die sogenannte „RNA-Prozessierung“. Das klingt zunächst etwas kompliziert. So ist es aber gar nicht. Ich werde dir zeigen, was bei der RNA-Prozessierung passiert und in welche Teilschritte sie sich gliedert. So wirst du es ganz leicht verstehen und dir merken können. Fangen wir erst einmal bei der Proteinbiosynthese an, also dem Weg von der DNA zum fertigen Protein. Sie gliedert sich in Transkription, also dem Umschreiben von DNA in RNA und der anschließenden Translation, dem Übersetzen von RNA zum Protein. Die RNA-Prozessierung schaltet sich genau zwischen Transkription und Translation, weshalb sie auch als „post-transkriptionelle Modifikation“ bezeichnet wird. Dabei musst du zunächst einmal wissen, dass die im Zellkern transkribierte mRNA lediglich eine Art Skizze ist: die Prä-mRNA. Sie muss auf verschiedenste Arten verändert werden, damit aus ihr viele verschieden Proteine entstehen können. Kommen wir zu den ersten beiden Teilschritten der RNA-Prozessierung: dem Capping und der Polyadenylierung. Dabei wird die Prä-mRNA an beiden Enden, dem 5’- und dem 3’-Ende, vor dem Abbau durch Enzyme geschützt. Das Capping schützt das 5’-Ende der Prä-mRNA durch das Anbinden eines modifizierten Guanin-Nukleotids, einer 5’-Cap-Struktur. Sie schützt quasi wie eine Kappe das 5’-Ende. Es erfolgt co-transkriptionell, also während der Transkription. Im zweiten Schritt, der Polyadenylierung, wird das 3’-Ende geschützt: durch einen sogenannten Poly-A-Schwanz. Dieser besteht aus einer lange Kette aus 50 bis 200 Adeninnukleotiden. Diese Modifikation erfolgt post-transkriptionell, also nach Beendigung der eigentlichen Transkription. Beide Teilschritte der Modifikation sind gleichzeitig Reifungssignale, die anzeigen, dass die mRNA ins Zytoplasma exportiert werden kann. Außerdem sind sie notwendig, damit ein Ribosom an das 5’-Ende der mRNA binden und mit dem Zusammenbau des Proteins beginnen kann. Eine weitere post-transkriptionelle Modifikation ist das RNA-Editing. Dabei werden Nukleotide eingefügt oder entfernt und Nukleobasen oder Ribosen chemisch verändert. So können nachträglich die Nukleotidsequenzen der mRNA verändert und viele verschiedene Proteinsynthesen ermöglicht werden. Eine letzte Form der Prozessierung ist das Spleißen. Dabei werden nichtcodierende Introns aus dem Mosaikgen herausgeschnitten. Die Introns bilden Schleifen, sodass die Enden der codierenden Exons dicht beieinander liegen und zusammengefügt werden können. Das Spleißen übernimmt ein großer Enzymkomplex, das Spleißosom. Sind diese vier Schritte abgeschlossen, erfolgt der Export der fertigen mRNA durch die Kernporen und der Transport zum Ribosom. Hier beginnt der eigentliche Zusammenbau der Proteine nach der Vorgabe durch die mRNA: die Translation. Schauen wir uns zum Schluss noch den Vergleich mit der Proteinbiosynthese bei Prokaryoten an. Der wohl größte Unterschied ist, dass bei Prokaryoten keine Prozessierung der mRNA stattfindet. Das macht die mRNA kurzlebiger, da die Enden nicht geschützt sind. Außerdem werden bei den Prokaryoten Proteine wesentlich schneller produziert. Grund dafür ist: Die DNA der Prokaryoten liegt frei im Zytoplasma vor und die Translation findet in unmittelbarer Nähe statt. Zudem muss die mRNA auch nicht gespleißt werden. Es gibt keine Introns. Fassen wir noch einmal zusammen: Die mRNA bei Eukaryoten wird vierfach modifiziert. Das nennt man Prozessierung. Die Enden werden durch eine 5’-Cap-Struktur und den Poly-A-Schwanz vor Abbau geschützt. Durch Editing werden Nukleotide herausgeschnitten oder hinzugefügt und Strukturen chemisch verändert. Beim Spleißen werden nicht-codierende Introns des Mosaikgens in Schleifen herausgeschnitten. Alle Modifikationen erfolgen im Zellkern. Mit Ausnahme der 5’-Cap-Struktur sind alle post-transkriptionell. Nach Umwandlung der Prä-mRNA in die mRNA wird diese zum Ribosom transportiert. Die Translation beginnt. Bei der Proteinbiosynthese der Prokaryoten gibt es keine Prozessierung. Die mRNA hat keine Introns und ist viel kurzlebiger. Proteine werden in unmittelbarer Nähe zur DNA und viel schneller translatiert. Daher ist die Varianz am Protein auch viel kleiner als bei Eukaryoten. Diese Modifikationen der RNA ermöglichen es, dass am Ende aus 30.000 bis 40.000 Genen im Erbmaterial rund 300.000 Proteine entstehen, durch die vielen verschiedenen Modifikationen in der RNA-Prozessierung. Tschüss und bis zum nächsten Mal.
Prozessierung – RNA-Modifikation bei Eukaryoten Übung
-
Beschreibe den Prozess des Spleißens.
-
Vergleiche die Prozesse des Cappings und der Polyadenylierung miteinander.
-
Vergleiche die Proteinbiosynthese von Prokaryoten und Eukaryoten.
-
Skizziere den Ablauf der Prozesse der Proteinbiosynthese bei Eukaryoten.
-
Ordne die Schritte der RNA-Prozessierung ihrer jeweiligen Definition zu.
-
Erkläre die Funktion des RNA-Editings anhand der Schemata.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.734
Lernvideos
37.178
Übungen
32.408
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Biologie
- Was ist DNA
- Organe Mensch
- Meiose
- Pflanzenzelle
- Blüte Aufbau
- Feldmaus
- Chloroplasten
- Chlorophyll
- Rna
- Chromosomen
- Rudimentäre Organe
- Wirbeltiere Merkmale
- Mitose
- Seehund
- Modifikation
- Bäume Bestimmen
- Metamorphose
- Synapse
- Synapse Aufbau und Funktion
- Ökosystem
- Amöbe
- Blobfisch
- Phänotyp
- Endoplasmatisches Retikulum
- Karyogramm
- RGT Regel
- Biotop
- Eukaryoten
- Calvin-Zyklus
- Codesonne
- Fotosynthese
- Allel
- Ribosomen
- Golgi-Apparat
- Mitochondrien
- Genotyp
- Zellorganellen
- Phospholipide
- Vakuole
- Gliazellen
- Nahrungskette Und Nahrungsnetz
- Phagozytose
- Vesikel
- Biozönose
- tRNA
- Sympatrische Artbildung
- Allopatrische Artbildung
- Interphase
- Schlüssel-Schloss-Prinzip
- Das Rind Steckbrief