Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Absolute und relative Häufigkeit – Überblick

Erfahre, wie absolute und relative Häufigkeit in der Mathematik funktionieren, anhand von Nussmischungen und Packungen. Die absolute Häufigkeit zeigt dir die konkrete Anzahl der Elemente, während die relative Häufigkeit ihren Anteil an der Gesamtmenge angibt. Interessiert? Dies und vieles mehr findest du im folgenden Text.

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Absolute und relative Häufigkeit – Überblick

Was ist die absolute Häufigkeit?

1/5
Bereit für eine echte Prüfung?

Das Absolute Häufigkeit Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.9 / 482 Bewertungen
Die Autor*innen
Avatar
Team Digital
Absolute und relative Häufigkeit – Überblick
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse - Oberstufe 5. Klasse - 6. Klasse

Beschreibung zum Video Absolute und relative Häufigkeit – Überblick

Weißt du, was der Unterschied zwischen relativer und absoluter Häufigkeit ist? Nein? Dann solltest du dir dieses Video anschauen. Du lernst, was relative und absolute Häufigkeit bedeuten und mit welchen Formeln du sie berechnen kannst. Dazu vergleichen wir den Rosinenanteil in Nussmischungen. Du lernst außerdem die kumulierten Häufigkeiten kennen. Im Anschluss kannst du versuchen, die Übungsaufgaben auf dieser Seite zu lösen. Fang gleich damit an!

Grundlagen zum Thema Absolute und relative Häufigkeit – Überblick

Absolute und relative Häufigkeit in der Mathematik

Du kennst das vielleicht: Du machst eine neue Packung Nussmischung auf und musst feststellen: Da sind ja viel zu viele Rosinen drin! Die größere Packung, die du das letzte Mal hattest, war viel besser: Im Vergleich zu den Nüssen gab es dort viel weniger Rosinen – obwohl es absolut mehr waren. Das klingt komisch? Nicht mehr lange! Im Folgenden wirst du erfahren, was es mit absoluter und relativer Häufigkeit auf sich hat!

Absolute Häufigkeit – Definition und Erklärung

Betrachten wir zwei Packungen Nussmischung, die jeweils Rosinen, Mandeln und Erdnüsse enthalten. Packung Nummer eins beinhaltet insgesamt 4040 Teile und Packung Nummer zwei beinhaltet 120120 Teile. Man nennt die Gesamtmenge auch die Grundmenge. Betrachtet man eine spezielle Sorte aus der Mischung, ist die absolute Häufigkeit per Definition die genaue Anzahl dieser Sorte. Um beispielsweise die absolute Häufigkeit der Rosinen zu ermitteln, müssen wir zählen, wie viele Rosinen sich in jeder Packung befinden.

Packung Nummer eins Packung Nummer zwei
Grundmenge 4040 120120 Gesamtanzahl der Teile in der Packung
absolute Häufigkeit Rosinen 88 2020 Gesamtanzahl der Rosinen in der Packung

In Packung Nummer eins befinden sich genau 88 Rosinen und in Packung Nummer zwei gibt es 2020 Rosinen.

Die absolute Häufigkeit entspricht der konkreten Anzahl an Elementen einer Menge, die bestimmte Eigenschaften erfüllen.

Teste dein Wissen zum Thema Absolute Häufigkeit!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Relative Häufigkeit – Definition und Erklärung

Die relative Häufigkeit entspricht dem Anteil, den eine Teilmenge mit bestimmten Eigenschaften an der Grundmenge hat.

Die relative Häufigkeit gibt also das Verhältnis zwischen absoluter Häufigkeit und Grundmenge an. Man kann also die relative Häufigkeit berechnen, indem man die absolute Häufigkeit durch die Grundmenge teilt. Das können wir auch für die Anzahl der Rosinen in den Nussmischungen machen:

Packung Nummer eins Packung Nummer zwei
Grundmenge 4040 120120 Gesamtanzahl an Teilen
absolute Häufigkeit Rosinen 88 2020 Gesamtanzahl an Rosinen
relative Häufigkeit Rosinen 840=0,2\dfrac{8}{40} = 0{,}2 20120=0,16\dfrac{20}{120} = 0{,}1\overline{6}

Obwohl sich in Packung Nummer zwei absolut gesehen mehr Rosinen befinden, ist die relative Häufigkeit, also der Rosinenanteil, geringer – nämlich etwa 17%17\,\% im Vergleich zu 20%20\,\%.

Wusstest du schon?
Häufigkeiten sind im Sport allgegenwärtig! Zum Beispiel wird die Trefferquote eines Basketballspielers oder einer Basketballspielerin als relative Häufigkeit angegeben. Wenn jemand 77 von 1010 Würfen trifft, beträgt die Trefferquote 70%70\,\%. So können Trainerinnen und Trainer die Leistung festhalten und für die Zukunft mit anderen Trefferquoten vergleichen!

Absolute und relative Häufigkeit – Unterschied

Während die absolute Häufigkeit die konkrete Anzahl angibt, mit der ein Ereignis auftritt, z. B. wie viele Rosinen sich genau in einer Packung befinden, setzt die relative Häufigkeit diese konkrete Zahl ins Verhältnis zur Gesamtzahl und gibt damit den Anteil der absoluten Häufigkeit an der Grundmenge an.

  • Absolute Häufigkeit
    Natürliche Zahl zwischen 00 und der Gesamtzahl der Versuche
  • Relative Häufigkeit:
    Dezimal- oder Prozentzahl zwischen 00 und 11 bzw. 0%0\,\% und 100%100\,\%

Absolute und relative Häufigkeit – Formel

Bei bekannter Grundmenge/Gesamtzahl können wir die relative Häufigkeit mithilfe der absoluten Häufigkeit berechnen und umgekehrt:

  • relative Ha¨ufigkeit=absolute Ha¨ufigkeitGesamtzahl\text{relative Häufigkeit} = \dfrac{\text{absolute Häufigkeit}}{\text{Gesamtzahl}}

  • absolute Ha¨ufigkeit=relative Ha¨ufigkeitGesamtzahl\text{absolute Häufigkeit} = \text{relative Häufigkeit} \cdot \text{Gesamtzahl}

Betrachten wir dies am Beispiel der Rosinen aus Packung Nummer eins:
400,2=840 \cdot 0{,}2 = 8
Für 20%20\,\% der 4040 Teile erhalten wir 88 Rosinen in Packung Nummer eins.

Auch die Gesamtzahl kann aus absoluter und relativer Häufigkeit berechnet werden.
Angenommen wir wissen von einer dritten Packung, dass sie 1212 Rosinen enthält und der Rosinenanteil bei 30%30\,\% liegt.

Wir rechnen:
Gesamtzahl=absolute Ha¨ufigkeitrelative Ha¨ufigkeit=120,3=40\text{Gesamtzahl} = \dfrac{\text{absolute Häufigkeit}}{\text{relative Häufigkeit}} = \dfrac{12}{0{,}3} = 40

Packung Nummer drei ist also ebenfalls eine kleine Packung mit insgesamt 4040 Teilen.

Schlaue Idee
Beim Einkaufen kann es nützlich sein, die absolute und relative Häufigkeit von Sonderangeboten zu kennen, um zu entscheiden, wann die beste Zeit für Schnäppchen ist.Je nach Gesamtzahl können 2020\,€ oder 20%20\,\% mehr Rabatt bedeuten!

Absolute und relative Häufigkeit berechnen – Übung mit Aufgaben

Ausblick – das lernst du nach Absolute und relative Häufigkeit – Überblick

Vertiefe dein Wissen mit Kumulierten Häufigkeiten oder dem Gesetz der großen Zahlen. Diese Themen bauen auf dein Verständnis der absoluten und relativen Häufigkeit auf und bieten dir neue, spannende Einblicke.

Zusammenfassung – Absolute und relative Häufigkeiten

  • Die absolute Häufigkeit beschreibt die konkrete Anzahl an Elementen in einer Menge, die bestimmte Eigenschaften erfüllen.
  • Die relative Häufigkeiten beschreibt den Anteil zur Grundmenge, die bestimmte Eigenschaften erfüllen.
  • Mit der Gesamtanzahl an Elementen in der Grundmenge kann jede absolute Häufigkeit in eine relative Häufigkeit umgerechnet werden:

    relative Ha¨ufigkeit=absolute Ha¨ufigkeitGesamtanzahl\text{relative Häufigkeit} = \dfrac{\text{absolute Häufigkeit}}{\text{Gesamtanzahl}}

Häufig gestellte Fragen zum Thema Absolute Häufigkeit

Transkript Absolute und relative Häufigkeit – Überblick

Viele kennen das Problem, man mag Rosinen nur bedingt und in Nussmischungen gibt es immer viel zu viele davon. Wir betrachten eine Packung eines Dreierpackt mit je 80 Gramm Inhalt und eine Familienpackungen mit 240 Gramm Inhalt, beide beinhalten Erdnüsse, Mandeln und Rosinen. Hmm... Es ergibt sich für beide Angebote doch dasselbe Gewicht. önnen sich die Angebote trotzdem in ihrer Zusammensetzung unterscheiden? m diese Frage zu beantworten, nutzen wir die absolute und relative Häufigkeit. afür betrachten wir jeweils den Inhalt einer kleinen Packung und den der großen Packung. Zunächst zählen wir alle Rosinen, die in den jeweiligen Nussmischungen enthalten sind. Wir erhalten für die kleine Packung eine Anzahl von 8 und für die Familienpackung eine Anzahl von 20 Rosinen, diese Anzahlen sind die jeweiligen absoluten Häufigkeiten. Die absolute Häufigkeit eines Objektes ist also gleich der Anzahl des jeweiligen Objektes in der Grundmenge, also in der gesamten Menge. In der kleinen Packung ist die Gesamtzahl von Nüsse und Rosinen 40, während es in der Familienpackung 120 sind. Können wir die absoluten Häufigkeiten nun direkt miteinander vergleichen? Nein, um zu bestimmen, in welcher Packung der ANTEIL an Rosinen größer ist, brauchen wir die jeweiligen relativen Häufigkeiten. Die relative Häufigkeit beschreibt den Anteil der absoluten Häufigkeit an der Grundmenge und sie ist somit der Quotient aus der absoluten Häufigkeit und der Grundmenge. Zur Bestimmung der relativen Häufigkeiten teilen wir also 8 durch 40 beziehungsweise 20 durch 120. Somit erhalten wir für die kleine Packung eine relative Häufigkeit von acht Vierzigsteln. Die Familienpackung hat einen Rosinenanteil von zwanzig Hundertzwanzigsteln. Diese beiden Brüche können wir noch kürzen zu einem Fünftel beziehungsweise einem Sechstel. Um einen besseren Eindruck über die jeweiligen Anteile zu bekommen, können wir diese Brüche auch in Prozent angeben. Wir erhalten so 20 beziehungsweise 16 Komma Periode 6 Prozent. Diese Angaben können wir auch in Dezimalzahlen ausdrücken, also 0,2 beziehungsweise 0,16 Periode 6 — das sind kurz 0 Komma 1 Periode 6. Welches Angebot sollte man wählen, wenn man nicht so viele Rosinen mag? Die Familienpackung hat einen geringeren Rosinenanteil und ist dementsprechend besser geeignet. Statt der Rosinen können wir aber auch den Anteil der Nüsse in den Nussmischungen betrachten. Hierzu notieren wir uns die absoluten Häufigkeiten der Mandeln und die absoulute Häufigkeit der Erdnüsse. Wir zählen 12 Erdnüsse und 20 Mandeln in der kleinen Nussmischung beziehungsweise 36 Erdnüsse und 64 Mandeln in der Familienpackung. Unsere Grundmengen sind weiterhin die Gesamtzahlen in den jeweiligen Packungen, also 40 beziehungsweise 120. Da wir hier nicht den Anteil der jeweiligen Nussart, sondern der Nüsse generell betrachten möchten, können wir die absoluten Häufigkeiten der Erdnüsse und Mandeln addieren. Die Summe der absoluten Häufigkeiten nennt man auch die kumulierte absolute Häufigkeit, oder auch die aufsummierte absolute Häufigkeit. Unsere kumulierten absoluten Häufigkeiten sind 12 + 20, also 32 beziehungsweise 36 + 64, also 100. Um die beiden Anteile der Nüsse besser vergleichen zu können, bietet sich wieder die relative Häufigkeit an. Wir teilen also wieder die absoluten Häufigkeiten, diesmal aber die kumulierte absoluten Häufigkeiten, durch die dazugehörigen Grundmengen. Dadurch erhalten wir kumulierte relative Häufigkeiten, also aufsummierte relative Häufigkeiten. Für die kleine Nussmischung beträgt diese 32 Vierzigstel und für die große Packung 100 Hundertzwanzigsteln. Gekürzt ergibt das 2 Fünftel beziehungsweise 5 Sechstel Auch diese Brüche können wir in Prozent angeben, wir erhalten 80 beziehungsweise 83 Komma Periode 3 Prozent. Oder als Dezimalzahl ausgedrückt, 0,8 bzw. 0,83 Periode 3; kurz 0 Komma 8 Periode 3. Auch hier kann man sehen, dass sich die Familienpackung anbietet, wenn man möglichst wenige Rosinen, also möglichst viele Nüsse haben möchte. Fassen wir das Gelernte noch zusammen. Die absolute Häufigkeit eines Objektes entspricht der Anzahl dieses Objektes in der Grundmenge. Die absolute Häufigkeit ist stets eine ganze Zahl, die größer oder gleich Null und kleiner oder gleich der Grundmenge ist. Die relative Häufigkeit eines Objektes erhalten wir, indem wir die absolute Häufigkeit dieses Objektes durch die jeweilige Grundmenge teilen. Die relative Häufigkeit ist also gleichbedeutend mit dem Anteil eines Objektes in Bezug auf die Grundmenge. Die relative Häufigkeit ist stets eine Zahl zwischen Null und Eins. Sie kann als Bruch, Dezimalzahl oder in Prozent angegeben werden. Durch Aufsummieren von absoluten Häufigkeiten, beispielsweise wenn wir mehrere verschiedene Objekte in einer Grundmenge betrachten, erhalten wir die kumulierte absolute Häufigkeit. Man spricht auch von der aufsummierten absoluten Anzahl oder Häufigkeit. Merke dir: Die kumulierte absolute Häufigkeit aller Objekte, in unserem Beispiel aller Nüsse und Rosinen, entspricht der Grundmenge. Die kumulierte relative Häufigkeit erhalten wir, in dem wir das Verhältnis von der kumulierten absoluten Häufigkeit und der Grundmenge bilden. Die kumulierte relative Häufigkeit aller Objekte, also der Anteil aller Objekte an der Grundmenge, ist gleich Eins. Nun können wir endlich unsere Nussmischung genießen. Ach herrje... Was ist denn da los? Wir sind scheinbar nicht die einzigen, die Rosinen nur bedingt mögen.

Absolute und relative Häufigkeit – Überblick Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Absolute und relative Häufigkeit – Überblick kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.243

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.682

Lernvideos

37.127

Übungen

32.366

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden