Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen

Das Gesetz der großen Zahlen besagt, dass sich die relativen Häufigkeiten der Ergebnisse eines Zufallsversuchs um die erwarteten Wahrscheinlichkeiten stabilisieren, wenn der Versuch immer wieder durchgeführt wird. Es gibt ein schwaches und ein starkes Gesetz der großen Zahlen, je nachdem, ob die Konvergenz der relativen Häufigkeiten wahrscheinlich oder fast sicher ist. Was heißt das für Gewinnspiele? Lass uns sehen!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen

Was versteht man unter der relativen Häufigkeit?

1/5
Bereit für eine echte Prüfung?

Das Relative Häufigkeit Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.3 / 145 Bewertungen
Die Autor*innen
Avatar
Team Digital
Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen
lernst du in der Unterstufe 1. Klasse - 2. Klasse

Beschreibung zum Video Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen

Kapitän Da Gamma muss zur Aufteilung seiner Beute wissen, was relative Häufigkeit und Wahrscheinlichkeit sind. Kannst du ihm dabei helfen? Falls du auch noch nicht weißt, was es damit auf sich hat, sieh dir dieses Video an.

Hier lernst du, was die Begriffe relative Häufigkeit und Wahrscheinlichkeit bedeuten. Dazu werden Beispiele gezeigt und das Gesetz der großen Zahlen wird eingeführt. Im Anschluss kannst du dein neues Wissen mit unseren interaktiven Übungen testen.

Grundlagen zum Thema Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen

Gesetz der großen Zahlen – Definition

Das Gesetz der großen Zahlen besagt, dass sich die relativen Häufigkeiten der Ergebnisse eines Zufallsversuchs um die erwarteten Wahrscheinlichkeiten stabilisieren, wenn der Versuch immer wieder durchgeführt wird.

Um die Aussage des Gesetzes der großen Zahlen besser zu verstehen, wollen wir kurz wiederholen, was der Unterschied zwischen der relativen Häufigkeit und der Wahrscheinlichkeit von Ereignissen ist.

Relative Häufigkeit, Wahrscheinlichkeit und das Gesetz der großen Zahlen

Die Formeln für die relative Häufigkeit eines Ergebnisses eines Zufallsexperiment und für die Wahrscheinlichkeit des Ergebnisses sehen sehr ähnlich aus: Beide Formeln werden durch einen Bruch von Anzahlen beschrieben.

  • Für die relative Häufigkeit hnh_n nach nn-maliger Durchführung eines Zufallsversuchs wird die absolute Häufigkeit HnH_n, mit der ein Ereignis aufgetreten ist, durch die Anzahl der Durchführungen nn geteilt:
    hn=Hnnh_n = \dfrac{H_n}{n}
  • Für die Wahrscheinlichkeit PP eines Ereignisses EE wird bei einem Laplace-Experiment die Anzahl günstiger Ergebnisse durch die Anzahl der möglichen Ergebnisse (Elemente der Ergebnismenge Ω\Omega) geteilt:
    P(E)=Anzahl der gu¨nstigen ErgebnisseAnzahl der mo¨glichen Ergebnisse=EΩP(E) = \dfrac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}} =\dfrac{\vert E \vert}{\vert \Omega \vert}

Das Gesetz der großen Zahlen besagt zweierlei:

  1. Bei mehrfacher Durchführung eines Zufallsexperiments stabilisiert sich die relative Häufigkeit der Ergebnisse.
  2. Dieser Wert nähert sich auf lange Sicht der Wahrscheinlichkeit des zugehörigen Ereignisses an.

Fehleralarm
Es ist ein weit verbreiteter Irrtum, dass die relative Häufigkeit gleich der Wahrscheinlichkeit ist. Wahrscheinlichkeit ist eine theoretische Größe, während relative Häufigkeit auf realen Daten basiert.

Gesetz der großen Zahlen – Beispiel

Nun wollen wir die Aussage am Beispiel des Münzwurfs verdeutlichen. Dazu betrachten wir eine Münze mit den Seiten „Sofa“ und „Zahl“. Sie wird einmal, dreimal und 100100-mal geworfen.

Relative Häufigkeit und Wahrscheinlichkeit

Wird die Münze nur einmal geworfen, tritt genau eines der beiden Ergebnisse ein. Die relative Häufigkeit dieses Ergebnisses ist dann 11, die des nicht eingetretenen Ergebnisses ist 00. Beide Werte liegen so weit weg von der Wahrscheinlichkeit 12\frac{1}{2} wie nur möglich. Wirfst du die Münze aber 100100-mal, fällt vielleicht 4848-mal „Sofa“ und 5252-mal „Zahl“. Die relativen Häufigkeiten von „Sofa“ und „Zahl“ sind dann 48100=0,48\frac{48}{100} = 0{,}48 bzw. 52100=0,52\frac{52}{100} = 0{,}52, also schon deutlich näher an der Wahrscheinlichkeit 12=0,5\frac{1}{2} = 0{,}5.

Die folgende Grafik zeigt, wie sich die relative Häufigkeit für das Ergebnis „Sofa“ bei mehrfacher Durchführung des Zufallsversuchs mit unterschiedlicher Anzahl von Wiederholungen verhält. Dabei steht jeder Punkt für die relative Häufigkeit eines nn-fachen Münzwurfs. Wir erkennen, dass die Punkte mit zunehmender Zahl an Wiederholungen nn zunehmend näher an der erwarteten Wahrscheinlichkeit 0,50{,}5 liegen.

Empirisches Gesetz der großen Zahlen Beispiel

Teste dein Wissen zum Thema Relative Häufigkeit!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Gesetz der großen Zahlen – Anwendungsbereiche

Es gibt verschiedene Bereiche, in denen das Gesetz der großen Zahlen praktische Anwendung findet. Ein paar Beispiele wollen wir hier kurz betrachten.

Gesetz der großen Zahlen bei Versicherungen

Für Versicherungen erlaubt das Gesetz der großen Zahlen Vorhersagen über die Anzahl der zu erwartenden Schadensfälle. Diese sind bei einer großen Zahl von Versicherten mit gleichem Risiko besonders gut. Allerdings machen z. B. Naturkatastrophen oder allgemeine Entwicklungen wie der Klimawandel, die viele Personen gleichzeitig betreffen, eine Anpassung der zugrunde liegenden Annahmen erforderlich.

Gesetz der großen Zahlen in der Medizin

In der medizinischen Forschung wird das Gesetz der großen Zahlen genutzt, um den Einfluss von Messfehlern, z. B. bei Studien zur Wirksamkeit von Behandlungen oder Nebenwirkungen von Medikamenten, zu reduzieren. Mit einer entsprechend hohen Zahl an Testpersonen sind hier genaue Aussagen möglich.
Dies gilt nicht nur in der Medizin, sondern allgemein in der empirischen Forschung.

Gesetz der großen Zahlen im Casino

Kennst du das?
Hast du auch schon einmal beim Spielen mit einem Würfel bemerkt, dass manche Zahlen häufiger kommen als andere? Wenn du den Würfel oft genug wirfst, wirst du feststellen, dass sich die Häufigkeiten der einzelnen Zahlen annähern. Das zeigt dir das Gesetz der großen Zahlen!

Beim Glücksspiel, z. B. am Roulettetisch, ist man versucht, das Gesetz der großen Zahlen so zu interpretieren, dass, nachdem einige Male hintereinander die Farbe Rot gefallen ist, nun als Ausgleich die Kugel bei der Farbe Schwarz liegen bleiben muss. Dem ist aber nicht so, da die einzelnen Runden stets als voneinander unabhängige Zufallsexperimente zu betrachten sind.
Das Gesetz der großen Zahlen ist also nicht als Gesetz des Ausgleichs zu verstehen. Es besagt lediglich, dass bei einer (sehr) großen Zahl von Runden die relative Häufigkeit z. B. für die Farbe Schwarz mit großer Wahrscheinlichkeit nahe an der theoretischen Wahrscheinlichkeit des Ereignisses liegt. Dadurch ist aber keinerlei Rückschluss auf den Ausgang einer bestimmten Runde möglich.

Ausblick – das lernst du nach Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen

Vertiefe dein Wissen in der Mathematik und erkunde die Themen Gegenwahrscheinlichkeit und Laplace-Experimente. Diese bauen direkt auf deinem aktuellen Wissen auf und helfen dir dabei, noch komplexere Wahrscheinlichkeitsrechnungen zu verstehen.

Gesetz der großen Zahlen – Zusammenfassung

  • Das Gesetz der großen Zahlen sagt aus, dass sich die relative Häufigkeit eines Zufallsergebnisses auf lange Sicht auf die theoretische Wahrscheinlichkeit eines Zufallsergebnisses einpendelt, wenn man das Zufallsexperiment sehr häufig wiederholt.
  • Das Gesetz der großen Zahlen erlaubt in der empirischen Forschung Vorhersagen über Wahrscheinlichkeiten.
  • Es ist nicht möglich, aus dem Gesetz der großen Zahlen auf den Ausgang der nächsten Durchführung eines Versuchs zu schließen, da es sich nicht um ein Gesetz des Ausgleichs handelt.

Häufig gestellte Fragen zum Thema Gesetz der großen Zahlen

Transkript Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen

Große Reichtümer führen zu großen Streitigkeiten. Deswegen führt Käpt'n Da Gamma eine neue Methode zur Entscheidungsfindung ein: den Münzwurf. Eine Münze ist nämlich ein sehr gutes Zufallsgerät. Um ihre Chancen zu kennen, müssen sich die Piraten mit relativen Häufigkeiten und Wahrscheinlichkeiten auskennen. Da sie aber nicht die schlausten sind, müssen wir Ihnen dabei helfen, diese beiden Begriffe zu verstehen. Ein Münzwurf ist ein Zufallsversuch mit zwei möglichen Ausgängen, in unserem Fall mit den Ergebnissen Sofa und Zahl. Werfen wir eine Münze zehnmal. Wenn wir sechsmal das Ergebnis Sofa und viermal das Ergebnis Zahl erhalten, so nennen wir die Zahlen sechs beziehungsweise vier jeweils die absolute Häufigkeit der Ergebnisse. Die absolute Häufigkeit zeigt, wie oft ein Ergebnis aufgetreten ist. Sie zeigt uns allerdings nicht, wie dies im Zusammenhang mit der Gesamtzahl der Versuche steht. Das kann man aber mit der relativen Häufigkeit verdeutlichen. Sie gibt den Anteil der absoluten Häufigkeit an der Gesamtzahl der Durchführungen eines Zufallsversuches an und wird mit dieser Formel berechnet. Berechnen wir die relativen Häufigkeiten für den zehnmaligen Münzwurf, so ergibt sich für Sofa sechs zehntel, also drei Fünftel und für Zahl vier zehntel, also zwei Fünftel. Nun ist es so, dass ein Pirat gewinnen oder verlieren kann, je nachdem, welche Seite der Münze oben liegt. Das Gewinnen oder Verlieren eines Piraten ist ein Ereignis des Zufallsversuches. Aber wie wahrscheinlich ist es denn, dass ein Pirat gewinnt? Die Wahrscheinlichkeit eines Ergebnisses ist die Anzahl der günstigen Ergebnisse geteilt durch die Anzahl der möglichen Ergebnisse. Jedes Ergebnis, dass zu einem Ereignis führt, nennen wir ein 'für das Ereignis günstiges Ergebnis'. Wenn zum Beispiel ein Pirat auf das Sofa setzt, dann ist das Ergebnis Sofa ein günstiges Ergebnis für das Ereignis: der Pirat gewinnt. Die möglichen Ergebnisse sind alle Ergebnisse, die in dem Zufallsversuch auftreten können. In diesem Fall also Sofa und Zahl. Die Wahrscheinlichkeit, dass der Pirat gewinnt, beträgt also 'Anzahl günstiger Ergebnisse', das ist 1 durch 'Anzahl möglicher Ergebnisse', das ist 2. Also ein Halb. Und die Wahrscheinlichkeit, dass der Pirat verliert, ist ebenfalls ein Halb. Käpt'n Da Gamma ist aber doch schlauer als gedacht und möchte seine Chancen erhöhen. Er hat eine spezielle Münze, welche auf beiden Seiten ein Sofa zeigt und setzt natürlich auf Sofa. "Das Ereignis 'Käpt'n Da Gamma gewinnt' enthält also diesmal zwei günstige Ergebnisse. Die Wahrscheinlichkeit ist demnach 2 geteilt durch 2, also 1. Da es auf dieser Münze keine Zahl gibt, also das Ereignis 'Käpt'n Da Gamma verliert' keine günstigen Ergebnisse enthält ergibt sich als Wahrscheinlichkeit hierfür 0 geteilt durch 2, also 0. Du hast gesehen, dass sowohl die relative Häufigkeit als auch die Wahrscheinlichkeit Brüche sind. Und zwischen diesen Brüchen gibt es auch eine Verbindung. Diese nennt man das Empirische Gesetz der großen Zahlen. Es besagt, dass sich die relative Häufigkeit eines Zufallsversuches bei mehrfacher Wiederholung stabilisiert und sich dieser Wert dem Wert der Wahrscheinlichkeit annähert. Aber was heißt denn das genau? Verwenden wir dazu wieder eine Münze, die eine Sofa-Seite und eine Zahl-Seite hat. Bei einmaliger Durchführung des Münzwurfs sind die relativen Häufigkeiten 1 und 0 also noch weit entfernt von der Wahrscheinlichkeit ein halb. Nach dem dritten Wurf hat zweimal Sofa und einmal Zahl oben gelegen. Es ergeben sich die relativen Häufigkeiten zwei Drittel und ein Drittel, wir sind also schon näher an die Wahrscheinlichkeit ein halb herangerückt. Nach dem hundertsten Wurf ist Sofa 48 Mal aufgetreten und Zahl 52 mal. Berechnen wir die relativen Häufigkeiten so sehen wir, dass diese ungefähr bei ein halb liegen. Fassen wir zusammen. Die relative Häufigkeit ist eine konkrete Zahl, die man mithilfe der absoluten Häufigkeit und der Gesamtzahl der Durchführungen eines Versuchs berechnet. Die Wahrscheinlichkeit eines Ereignisses ist dagegen eher ein Konzept, welches sich mithilfe der Anzahl der günstigen Ergebnisse und der Anzahl der möglichen Ergebnisse berechnen lässt. Das Empirische Gesetz der großen Zahlen besagt folgendes: Wird ein Versuch häufig durchgeführt, so stabilisieren sich die relativen Häufigkeiten und nähern sich dem Wert der Wahrscheinlichkeiten an. Sieht so aus als wären die Piraten bereit für den alles entscheidenden Münzwurf.

Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Relative Häufigkeit und Wahrscheinlichkeit – Gesetz der großen Zahlen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.729

Lernvideos

37.200

Übungen

32.432

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

zuri mit Bleistift und Notizbuch
Über 1,6 Millionen Schüler*innen nutzen sofatutor
Erhalten Sie in weniger als 2 Minuten ein persönliches Willkommensangebot für ihr Kind. Erhalten Sie in weniger als 2 Minuten ein persönliches Willkommensangebot für ihr Kind.
Quiz starten
Quiz starten
Quiz starten