Maßstab – Vergrößerungen
Lerne, wie man anhand eines Maßstabs eine Vergrößerung erkennt und Größenverhältnisse berechnet. Unterscheide den Maßstab 1:1 von Vergrößerungen wie 2:1 und löse Beispiele. Bist du interessiert? Das und mehr findest du im Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Maßstab – Vergrößerungen
Mit dem Maßstab vergrößern – Mathematik
Zunächst lernst du, wie du an der Angabe eines Maßstabs erkennen kannst, ob es sich um eine Vergrößerung handelt. Anschließend siehst du, wie du zu einer gegebenen Vergrößerung den zugehörigen Maßstab angeben kannst und wie du ausgehend vom Maßstab und Bild oder Original die Größe vom Original oder Bild berechnen kannst.
In diesem Beispiel ist der Schmetterling im Bild genauso groß wie im Original.
Man kann auch sagen, das Bild und das Original stimmen im Maßstab , gesprochen 1 zu 1, überein.
Was bedeutet der Maßstab 2 zu 1?
Steht im Maßstab eine größere Zahl links, so gibt er eine Vergrößerung an. Steht im Maßstab rechts eine , so gibt die Zahl links im Maßstab an, um wie viel das Original vergrößert ist. Der folgende Schmetterling wurde im Maßstab fotografiert. im Bild entsprechen im Original.
Entsprechend ist ein Schmetterling in einem Bild mit dem Maßstab dreimal so groß wie der Schmetterling im Original und im Maßstab viermal so groß und so weiter.
Mit dem Maßstab vergrößern – Beispiele
Nun schauen wir uns Beispiele an, in denen das Vergrößern mithilfe von Maßstäben einfach erklärt wird. Das folgende Bild ist im Maßstab fotografiert. Im Bild hat der Schmetterling eine Flügelspannweite von .
Wir können mithilfe des Maßstabs nun ausrechnen, wie groß der Schmetterling in Wirklichkeit ist. Der Maßstab bedeutet, dass der Schmetterling im Bild doppelt so groß ist wie der Schmetterling in Wirklichkeit. Deswegen teilen wir durch 2, um die Flügelspannweite des Schmetterlings in Wirklichkeit herauszufinden.
Die Flügelspannweite des Schmetterlings in Wirklichkeit beträgt also .
Wenn man den Maßstab und die Größe des Originals gegeben hat, kann man daraus auch die Größe, die der Schmetterling im Bild haben muss, berechnen. In diesem Beispiel wissen wir, dass das Bild im Maßstab ist. Die Flügelspannweite des Schmetterlings ist . Wie groß ist dann die Flügelspannweite im Bild?
Im Bild ist der Schmetterling dreimal so groß wie in Wirklichkeit. Also multiplizieren wir die Spannweite im Original mit 3:
Im Bild beträgt die Flügelspannweite des Schmetterlings also .
Mit dem Maßstab Vergrößerungen berechnen – Zusammenfassung
Mithilfe eines Maßstabs kann man angeben, in welchem Verhältnis eine Länge in einem Bild zu der Länge in der Wirklichkeit steht. Steht im Maßstab die größere Zahl links, so gibt er eine gleichmäßige Vergrößerung des Originals an. Die Zahl links gibt an, wie viele Male das Bild gegenüber dem Original vergrößert wurde, sofern die Zahl rechts eine ist. In diesem Fall kann man mithilfe des gegebenen Maßstabs die Längen von Bild und Original ineinander umrechnen. Möchte man bei Vergrößerungen von Längen in einem Bild in die entsprechenden Längen im Original umrechnen, so teilt man durch die Zahl links in der Angabe zum Maßstab. Andersherum multipliziert man mit dieser Zahl, wenn man die Längen im Original bereits kennt und daraus die Längen im Bild berechnen möchte.
Wenn du noch weitere Übungen zum Maßstab bei Vergrößerungen suchst, so wirst du auf dieser Seite fündig. Hier findest du außerdem auch Arbeitsblätter zum Maßstab bei Vergrößerungen.
Transkript Maßstab – Vergrößerungen
Melika ist begeisterte Insektenfotografin. Doch da Insekten so klein sind, muss sie immer genau heranzoomen, damit man sie auf den Bildern auch wirklich erkennen kann. Auf ihren Bildern werden die Insekten also durch eine Vergrößerung abgebildet. Sie werden durch einen bestimmten Maßstab dargestellt. Auf diesem Bild sehen wir einen Schmetterling in Originalgröße. Das heißt die Größe des Schmetterlings auf dem Bild entspricht der Größe des Schmetterlings in Wirklichkeit. Man kann auch sagen, Bild und Original stimmen im Maßstab 1:1 überein. Melika hat nun ein Bild geschossen, auf dem der Schmetterling doppelt so groß ist. Dies ist ein Maßstab 2:1. Der Maßstab 2 zu 1 bedeutet, dass das Bild des Schmetterlings 2-mal so groß ist wie der Schmetterling im Original. 2 cm im Bild... entsprechen 1 cm im Original. Steht im Maßstab eine größere Zahl LINKS, so gibt er eine gleichmäßige VERGRÖßERUNG des Originals an. Die Zahl links gibt dann an, um wie viel das Original vergrößert wurde. Wie lautet also der Maßstab, wenn wir den Schmetterling um das 3-fache vergrößern? 3:1. Ist der Schmetterling auf dem Bild 4-mal so groß wie der Schmetterling in Wirklichkeit, so ist dies ein Maßstab von 4:1. Dieses Bild besitzt den Maßstab 2:1. Im Bild hat der Schmetterling eine Flügelspannweite von 16 cm. Wir können mithilfe des Maßstabs bestimmen, wie groß der Schmetterling in Wirklichkeit ist. Der Maßstab 2:1 bedeutet, dass das Bild 2-mal so groß ist, wie der Schmetterling in der Wirklichkeit. Wir teilen 16 cm durch 2 und erhalten die tatsächliche Größe des Schmetterlings. Der originale Schmetterling hat also eine Spannweite von 8cm in Wirklichkeit. Hat man einen Maßstab und die Größe des Originals gegeben, so kann man damit auch berechnen, wie die Größe im Bild sein muss. Dieser Schmetterling hat eine Flügelspannweite von 6 cm. Wir wollen berechnen, wie groß die Flügelspannweite in einem Bild im Maßstab von 3:1 ist. Das Bild ist also 3-mal so groß, wie der Schmetterling in Wirklichkeit. Um die Spannweite im Bild herauszufinden, rechnen wir also 3 mal 6 cm. Das sind 18 cm. Fassen wir das nochmal zusammen. Mithilfe eines Maßstabes kann man angeben, um wie viel ein Bild von der Wirklichkeit abweicht. Steht im Maßstab eine größere Zahl LINKS, so gibt er eine gleichmäßige Vergrößerung des Originals an. Die Zahl links gibt an, wie viele Male etwas gegenüber dem Original vergrößert wurde. Der Maßstab 2:1 zeigt zum Beispiel, dass das Bild 2-mal größer ist als das Original. 2 cm im Bild entsprechen 1 cm im Original. Und wie läuft es jetzt bei Melika? Da hat sie wohl zu sehr reingezoomt. Da kommt der Schmetterling aber ganz groß raus.
Maßstab – Vergrößerungen Übung
9.226
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.663
Lernvideos
37.087
Übungen
32.336
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben